Back to main site | Back to man page index

SYSTEMD-ANALYZE(1)                                 systemd-analyze                                 SYSTEMD-ANALYZE(1)



NAME
       systemd-analyze - Analyze system boot-up performance

SYNOPSIS
       systemd-analyze [OPTIONS...] [time]

       systemd-analyze [OPTIONS...] blame

       systemd-analyze [OPTIONS...] critical-chain [UNIT...]

       systemd-analyze [OPTIONS...] plot [> file.svg]

       systemd-analyze [OPTIONS...] dot [PATTERN...] [> file.dot]

       systemd-analyze [OPTIONS...] dump

       systemd-analyze [OPTIONS...] set-log-level LEVEL

       systemd-analyze [OPTIONS...] verify [FILES...]

DESCRIPTION
       systemd-analyze may be used to determine system boot-up performance statistics and retrieve other state and
       tracing information from the system and service manager, and to verify the correctness of unit files.

       systemd-analyze time prints the time spent in the kernel before userspace has been reached, the time spent in
       the initial RAM disk (initrd) before normal system userspace has been reached, and the time normal system
       userspace took to initialize. Note that these measurements simply measure the time passed up to the point
       where all system services have been spawned, but not necessarily until they fully finished initialization or
       the disk is idle.

       systemd-analyze blame prints a list of all running units, ordered by the time they took to initialize. This
       information may be used to optimize boot-up times. Note that the output might be misleading as the
       initialization of one service might be slow simply because it waits for the initialization of another service
       to complete.

       systemd-analyze critical-chain [UNIT...]  prints a tree of the time-critical chain of units (for each of the
       specified UNITs or for the default target otherwise). The time after the unit is active or started is printed
       after the "@" character. The time the unit takes to start is printed after the "+" character. Note that the
       output might be misleading as the initialization of one service might depend on socket activation and because
       of the parallel execution of units.

       systemd-analyze plot prints an SVG graphic detailing which system services have been started at what time,
       highlighting the time they spent on initialization.

       systemd-analyze dot generates textual dependency graph description in dot format for further processing with
       the GraphViz dot(1) tool. Use a command line like systemd-analyze dot | dot -Tsvg > systemd.svg to generate a
       graphical dependency tree. Unless --order or --require is passed, the generated graph will show both ordering
       and requirement dependencies. Optional pattern globbing style specifications (e.g.  *.target) may be given at
       the end. A unit dependency is included in the graph if any of these patterns match either the origin or
       destination node.

       systemd-analyze dump outputs a (usually very long) human-readable serialization of the complete server state.
       Its format is subject to change without notice and should not be parsed by applications.

       systemd-analyze set-log-level LEVEL changes the current log level of the systemd daemon to LEVEL (accepts the
       same values as --log-level= described in systemd(1)).
       --system
           Operates on the system systemd instance. This is the implied default.

       --order, --require
           When used in conjunction with the dot command (see above), selects which dependencies are shown in the
           dependency graph. If --order is passed, only dependencies of type After= or Before= are shown. If
           --require is passed, only dependencies of type Requires=, RequiresOverridable=, Requisite=,
           RequisiteOverridable=, Wants= and Conflicts= are shown. If neither is passed, this shows dependencies of
           all these types.

       --from-pattern=, --to-pattern=
           When used in conjunction with the dot command (see above), this selects which relationships are shown in
           the dependency graph. Both options require a glob(7) pattern as an argument, which will be matched against
           the left-hand and the right-hand, respectively, nodes of a relationship.

           Each of these can be used more than once, in which case the unit name must match one of the values. When
           tests for both sides of the relation are present, a relation must pass both tests to be shown. When
           patterns are also specified as positional arguments, they must match at least one side of the relation. In
           other words, patterns specified with those two options will trim the list of edges matched by the
           positional arguments, if any are given, and fully determine the list of edges shown otherwise.

       --fuzz=timespan
           When used in conjunction with the critical-chain command (see above), also show units, which finished
           timespan earlier, than the latest unit in the same level. The unit of timespan is seconds unless specified
           with a different unit, e.g. "50ms".

       --no-man
           Do not invoke man to verify the existence of man pages listed in Documentation=.

       -H, --host=
           Execute the operation remotely. Specify a hostname, or a username and hostname separated by "@", to
           connect to. The hostname may optionally be suffixed by a container name, separated by ":", which connects
           directly to a specific container on the specified host. This will use SSH to talk to the remote machine
           manager instance. Container names may be enumerated with machinectl -H HOST.

       -M, --machine=
           Execute operation on a local container. Specify a container name to connect to.

       -h, --help
           Print a short help text and exit.

       --version
           Print a short version string and exit.

       --no-pager
           Do not pipe output into a pager.

EXIT STATUS
       On success, 0 is returned, a non-zero failure code otherwise.

EXAMPLES FOR DOT
       Example 1. Plots all dependencies of any unit whose name starts with "avahi-daemon"

           $ systemd-analyze dot 'avahi-daemon.*' | dot -Tsvg > avahi.svg

       ·   missing dependencies which are required to start the given unit,

       ·   man pages listed in Documentation= which are not found in the system,

       ·   commands listed in ExecStart= and similar which are not found in the system or not executable.

       Example 3. Misspelt directives

           $ cat ./user.slice
           [Unit]
           WhatIsThis=11
           Documentation=man:nosuchfile(1)
           Requires=different.service

           [Service]
           Desription=x

           $ systemd-analyze verify ./user.slice
           [./user.slice:9] Unknown lvalue 'WhatIsThis' in section 'Unit'
           [./user.slice:13] Unknown section 'Service'. Ignoring.
           Error: org.freedesktop.systemd1.LoadFailed:
              Unit different.service failed to load:
              No such file or directory.
           Failed to create user.slice/start: Invalid argument
           user.slice: man nosuchfile(1) command failed with code 16


       Example 4. Missing service units

           $ tail ./a.socket ./b.socket
           ==> ./a.socket <==
           [Socket]
           ListenStream=100

           ==> ./b.socket <==
           [Socket]
           ListenStream=100
           Accept=yes

           $ systemd-analyze verify ./a.socket ./b.socket
           Service a.service not loaded, a.socket cannot be started.
           Service [email protected] not loaded, b.socket cannot be started.


ENVIRONMENT
       $SYSTEMD_PAGER
           Pager to use when --no-pager is not given; overrides $PAGER. Setting this to an empty string or the value
           "cat" is equivalent to passing --no-pager.

       $SYSTEMD_LESS
           Override the default options passed to less ("FRSXMK").

SEE ALSO
       systemd(1), systemctl(1)