
Embedded Linux Training

Lab Book

Free Electrons
http://free-electrons.com

March 29, 2014

http://free-electrons.com

Free Electrons Embedded Linux Training

About this document

Updates to this document can be found on http://free-electrons.com/doc/training/
embedded-linux/.

This document was generated from LaTeX sources found on http://git.free-electrons.
com/training-materials.

More details about our training sessions can be found on http://free-electrons.com/
training.

Copying this document

© 2004-2014, Free Electrons, http://free-electrons.com.

This document is released under the terms of the Creative Commons CC BY-SA
3.0 license . This means that you are free to download, distribute and even modify
it, under certain conditions.

Corrections, suggestions, contributions and translations are welcome!

2 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com/doc/training/embedded-linux/
http://free-electrons.com/doc/training/embedded-linux/
http://git.free-electrons.com/training-materials
http://git.free-electrons.com/training-materials
http://free-electrons.com/training
http://free-electrons.com/training
http://free-electrons.com
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://free-electrons.com

Free Electrons Embedded Linux Training

Training setup
Download files and directories used in practical labs

Install lab data

For the different labs in the training, your instructor has prepared a set of data (kernel images,
kernel configurations, root filesystems and more). Download and extract its tarball from a
terminal:

cd

wget http://free-electrons.com/doc/training/embedded-linux/labs.tar.xz

sudo tar Jvxf labs.tar.xz

sudo chown -R <user>.<user> felabs

Note that using root permissions are required to extract the character and block device files
contained in this lab archive. This is an exception. For all the other archives that you will
handle during the practical labs, you will never need root permissions to extract them. If
there is another exception, we will let you know.

Lab data are now available in an felabs directory in your home directory. For each lab there
is a directory containing various data. This directory will also be used as working space for
each lab, so that the files that you produce during each lab are kept separate.

You are now ready to start the real practical labs!

Install extra packages

Ubuntu comes with a very limited version of the vi editor. Install vim, a improved version of
this editor.

sudo apt-get install vim

More guidelines

Can be useful throughout any of the labs

• Read instructions and tips carefully. Lots of people make mistakes or waste time because
they missed an explanation or a guideline.

• Always read error messages carefully, in particular the first one which is issued. Some
people stumble on very simple errors just because they specified a wrong file path and
didn’t pay enough attention to the corresponding error message.

• Never stay stuck with a strange problem more than 5 minutes. Show your problem to
your colleagues or to the instructor.

• You should only use the root user for operations that require super-user privileges, such
as: mounting a file system, loading a kernel module, changing file ownership, configur-

© 2004-2014 Free Electrons, CC BY-SA license 3

http://free-electrons.com

Free Electrons Embedded Linux Training

ing the network. Most regular tasks (such as downloading, extracting sources, compil-
ing...) can be done as a regular user.

• If you ran commands from a root shell by mistake, your regular user may no longer
be able to handle the corresponding generated files. In this case, use the chown -R
command to give the new files back to your regular user.
Example: chown -R myuser.myuser linux-3.4

4 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

Building a cross-compiling toolchain
Objective: Learn how to compile your own cross-compiling toolchain for
the uClibc C library

After this lab, you will be able to:

• Configure the crosstool-ng tool

• Execute crosstool-ng and build up your own cross-compiling toolchain

Setup

Go to the $HOME/felabs/sysdev/toolchain directory.

Install needed packages

Install the packages needed for this lab:

sudo apt-get install autoconf automake libtool libexpat1-dev \
libncurses5-dev bison flex patch curl cvs texinfo \
build-essential subversion gawk python-dev gperf

Getting Crosstool-ng

Get the latest 1.19.x release of Crosstool-ng at http://crosstool-ng.org. Expand the
archive right in the current directory, and enter the Crosstool-ng source directory.

Installing Crosstool-ng

We can either install Crosstool-ng globally on the system, or keep it locally in its download
directory. We’ll choose the latter solution. As documented in docs/2\ -\ Installing\
crosstool-NG.txt, do:

./configure --enable-local
make
make install

Then you can get Crosstool-ng help by running

./ct-ng help

Configure the toolchain to produce

A single installation of Crosstool-ng allows to produce as many toolchains as you want, for
different architectures, with different C libraries and different versions of the various compo-
nents.

Crosstool-ng comes with a set of ready-made configuration files for various typical setups:
Crosstool-ng calls them samples. They can be listed by using ./ct-ng list-samples.

© 2004-2014 Free Electrons, CC BY-SA license 5

http://crosstool-ng.org
http://free-electrons.com

Free Electrons Embedded Linux Training

We will use the arm-unknown-linux-uclibcgnueabi sample. It can be loaded by issuing:

./ct-ng arm-unknown-linux-uclibcgnueabi

Then, to refine the configuration, let’s run the menuconfig interface:

./ct-ng menuconfig

In Path and misc options:

• Change Prefix directory to /usr/local/xtools/${CT_TARGET}. This is the
place where the toolchain will be installed.

• Change Maximum log level to see to DEBUG so that we can have more details on
what happened during the build in case something went wrong.

In Toolchain options:

• Set Tuple’s alias to arm-linux. This way, we will be able to use the compiler as
arm-linux-gcc instead of arm-unknown-linux-uclibcgnueabi-gcc, which is
much longer to type.

In Debug facilities:

• Make sure that gdb, strace and ltrace are enabled.

• Remove the other options (dmalloc and duma).

• In gdb options:

– Make sure that the Cross-gdb and Build a static gdbserver options are
enabled; the other options are not needed.

– Set gdb version to 7.4.1.

Explore the different other available options by traveling through the menus and looking at
the help for some of the options. Don’t hesitate to ask your trainer for details on the available
options. However, remember that we tested the labs with the configuration described above.
You might waste time with unexpected issues if you customize the toolchain configuration.

Produce the toolchain

First, create the directory /usr/local/xtools/ and change its owner to your user, so that
Crosstool-ng can write to it.

Then, create the directory $HOME/src in which Crosstool-NG will save the tarballs it will
download.

Nothing is simpler:

./ct-ng build

And wait!

Known issues

Source archives not found on the Internet

It is frequent that Crosstool-ng aborts because it can’t find a source archive on the Internet,
when such an archive has moved or has been replaced by more recent versions. New Crosstool-
ng versions ship with updated URLs, but in the meantime, you need work-arounds.

6 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

If this happens to you, what you can do is look for the source archive by yourself on the In-
ternet, and copy such an archive to the src directory in your home directory. Note that even
source archives compressed in a different way (for example, ending with .gz instead of .bz2)
will be fine too. Then, all you have to do is run ./ct-ng build again, and it will use the
source archive that you downloaded.

ppl-0.10.2 compiling error with gcc 4.7.1

If you are using gcc 4.7.1, for example in Ubuntu 12.10 (not officially supported in these labs),
compilation will fail in ppl-0.10.2 with the below error:

error: 'f_info' was not declared in this scope

One solution is to add the -fpermissive flag to the CT_EXTRA_FLAGS_FOR_HOST setting
(in Path and misc options -> Extra host compiler flags).

Testing the toolchain

You can now test your toolchain by adding /usr/local/xtools/arm-unknown-linux-
uclibcgnueabi/bin/ to your PATH environment variable and compiling the simple hello.
c program in your main lab directory with arm-linux-gcc.

You can use the file command on your binary to make sure it has correctly been compiled
for the ARM architecture.

Cleaning up

To save about 3 GB of storage space, do a ./ct-ng clean in the Crosstool-NG source direc-
tory. This will remove the source code of the different toolchain components, as well as all the
generated files that are now useless since the toolchain has been installed in /usr/local/
xtools.

© 2004-2014 Free Electrons, CC BY-SA license 7

http://free-electrons.com

Free Electrons Embedded Linux Training

Bootloader - U-Boot
Objectives: Set up serial communication, compile and install the U-Boot
bootloader, use basic U-Boot commands, set up TFTP communication
with the development workstation.

As the bootloader is the first piece of software executed by a hardware platform, the installation
procedure of the bootloader is very specific to the hardware platform. There are usually two
cases:

• The processor offers nothing to ease the installation of the bootloader, in which case the
JTAG has to be used to initialize flash storage and write the bootloader code to flash.
Detailed knowledge of the hardware is of course required to perform these operations.

• The processor offers a monitor, implemented in ROM, and through which access to the
memories is made easier.

The IGEPv2 board, which uses the DM3730 or the OMAP3530 processors, falls into the second
category. The monitor integrated in the ROM reads the MMC/SD card to search for a valid
bootloader before looking at the internal NAND flash for a bootloader. Therefore, by using an
MMC/SD card, we can start up a OMAP3-based board without having anything installed on
it.

Setup

Go to the ˜/felabs/sysdev/bootloader directory.

MMC/SD card setup

The ROM monitor can read files from a FAT filesystem on the MMC/SD card. However, the
MMC/SD card must be carefully partitionned, and the filesystem carefully created in order to
be recognized by the ROM monitor. Here are special instructions to format an MMC/SD card
for the OMAP-based platforms.

First, connect your card reader to your workstation, with the MMC/SD card inside. Type
the dmesg command to see which device is used by your workstation. In case the device is
/dev/sdb, you will see something like:

sd 3:0:0:0: [sdb] 3842048 512-byte hardware sectors: (1.96 GB/1.83 GiB)

If your PC has an internal MMC/SD card reader, the device may also been seen as /dev/
mmcblk0, and the first partition as mmcblk0p1. 1. You will see that the MMC/SD card is seen
in the same way by the IGEPv2 board.

In the following instructions, we will assume that your MMC/SD card is seen as /dev/sdb by
your PC workstation.

1This is not always the case with internal MMC/SD card readers. On some PCs, such devices are behind an internal
USB bus, and thus are visible in the same way external card readers are

8 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

Caution: read this carefully before proceeding. You could destroy existing partitions on
your PC!
Do not make the confusion between the device that is used by your board to represent your
MMC/SD disk (probably /dev/sda), and the device that your workstation uses when the
card reader is inserted (probably /dev/sdb).
So, don’t use the /dev/sda device to reflash your MMC disk from your workstation. People
have already destroyed their Windows partition by making this mistake.

You can also run cat /proc/partitions to list all block devices in your system. Again,
make sure to distinguish the SD/MMC card from the hard drive of your development work-
station!

Type the mount command to check your currently mounted partitions. If MMC/SD partitions
are mounted, unmount them:

$ sudo umount /dev/sdb1
$ sudo umount /dev/sdb2
...

Now, clear possible MMC/SD card contents remaining from previous training sessions:

$ sudo dd if=/dev/zero of=/dev/sdb bs=1M count=256

As we explained earlier, the TI OMAP rom monitor needs special partition geometry settings
to read partition contents. The MMC/SD card must have 255 heads and 63 sectors.

Let’s use the cfdisk command to create a first partition with these settings:

sudo cfdisk -h 255 -s 63 /dev/sdb

In the cfdisk interface, create a first primary partition, starting from the beginning, with a 64
MB size, a Bootable type and a 0C type (W95 FAT32 (LBA)). Press Write when you are
done.

If you used fdisk before, you should find cfdisk much more convenient!

Format this new partition in FAT32, with the boot label (name):

sudo mkfs.vfat -n boot -F 32 /dev/sdb1

Then, remove and insert your card again.

Your MMC/SD card is ready to use.

U-Boot setup

Download U-Boot from the mainline igep download site:

wget ftp://ftp.denx.de/pub/u-boot/u-boot-2013.10.tar.bz2
tar xvf u-boot-2013.10.tar.bz2
cd u-boot-2013.10

Then, apply the 0001-arm-omap-i2c-don-t-zero-cnt-in-i2c_write.patch patch
from this lab’s data directory:

cat /path/to/0001-arm-omap-i2c-don-t-zero-cnt-in-i2c_write.patch | \
patch -p1

Get an understanding of its configuration and compilation steps by reading the README file,
and specifically the Building the software section.

© 2004-2014 Free Electrons, CC BY-SA license 9

http://free-electrons.com

Free Electrons Embedded Linux Training

Basically, you need to:

• set the CROSS_COMPILE environment variable;

• run make <NAME>_config, where <NAME> is the name of your board as declared in
the boards.cfg file. There are two flavors of the IGEPv2: since the RevC6 they use a
NAND flash (igep0020_nand) and before this revision they were a OneNAND flash
(igep0020). Note that for our platform, the configuration file is include/configs/
igep00x0.h. Read this file to get an idea of how a U-Boot configuration file is written;

• Finally, run make2, which should build U-Boot.

You can now copy the generated MLO and u-boot.img files to the MMC card. MLO is the first
stage bootloader, u-boot.img is the second stage bootloader.

Unmount the MMC card partition.

Setting up serial communication with the board

Plug the IGEPv2 board on your computer using the provided USB-to-serial cable. When
plugged-in, a serial port should appear, /dev/ttyUSB0.

You can also see this device appear by looking at the output of dmesg.

To communicate with the board through the serial port, install a serial communication pro-
gram, such as picocom:

sudo apt-get install picocom

You also need to make your user belong to the dialout group to be allowed to write to the
serial console:

sudo adduser $USER dialout

You need to log out and in again for the group change to be effective.

Run picocom -b 115200 /dev/ttyUSB0, to start serial communication on /dev/ttyUSB0,
with a baudrate of 115200. If you wish to exit picocom, press [Ctrl][a] followed by [Ctrl]
[x].

Testing U-Boot on the MMC card

Insert the MMC card into the IGEP board, reset the board and check that it boots your new
bootloaders. You can verify this by checking the build dates:

U-Boot SPL 2013.10 (Nov 15 2013 - 14:12:51)
reading u-boot.img
reading u-boot.img

U-Boot 2013.10 (Nov 15 2013 - 14:12:51)

OMAP36XX/37XX-GP ES1.2, CPU-OPP2, L3-200MHz, Max CPU Clock 1 Ghz
IGEPv2 + LPDDR/NAND
I2C: ready
DRAM: 512 MiB

2You can speed up the compiling by using the -jX option with make, where X is the number of parallel jobs used
for compiling. Twice the number of CPU cores is a good value.

10 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

NAND: 512 MiB
MMC: OMAP SD/MMC: 0

*** Warning - bad CRC, using default environment

In: serial
Out: serial
Err: serial
Die ID #415c00029ff80000015913d80702502a
Net: smc911x-0
Hit any key to stop autoboot: 0

The message reading u-boot.img also confirms that U-Boot has been loaded from the
MMC device. You don’t get it when you boot from NAND flash (there are no files on raw
flash anyway).

Interrupt the countdown to enter the U-Boot shell:

U-Boot #

In U-Boot, type the help command, and explore the few commands available.

Reflashing from U-boot

We will flash U-boot and later the kernel and filesystem in NAND flash. As far as bootloaders
are concerned, the layout of the NAND flash will look like:

• Offset 0x0 for the first stage bootloader is dictated by the hardware: the ROM code of the
OMAP looks for a bootloader at offset 0x0 in the NAND flash.

• Offset 0x80000 for the second stage bootloader is decided by the first stage bootloader.
This can be changed by changing the U-Boot configuration.

• Offset 0x260000 of the U-Boot environment is also decided by the U-Boot configuration.

Let’s first erase the whole NAND storage to remove its existing contents. This way, we are sure
that what we find in NAND comes from our own manipulations:

nand erase.chip

We are going to flash the first stage bootloader in NAND. To do so, type the following com-
mands:

fatload mmc 0 80000000 MLO

This loads the file from MMC 0 partition 0 to memory at address 0x80000000.

nandecc hw

© 2004-2014 Free Electrons, CC BY-SA license 11

http://free-electrons.com

Free Electrons Embedded Linux Training

This tells U-Boot to write data to NAND using the hardware ECC algorithm, which the ROM
code of the OMAP uses to load the first stage bootloader.

nand erase 0 80000

This command erases a 0x80000 byte long space of NAND flash from offset 03.

nand write 80000000 0 80000

This command writes data to NAND flash. The source is 0x80000000 (where we’ve loaded the
file to store in the flash) and the destination is offset 0 of NAND flash. The length of the copy is
0x80000 bytes, which corresponds to the space we’ve just erased before. It is important to erase
the flash space before trying to write on it.

Now that the first stage has been transfered to NAND flash, you can now do the same with
U-Boot.

The storage offset of U-Boot in the NAND is 0x80000 (just after the space reserved for the first
stage bootloader) and the length is 0x1e0000.

After flashing the U-Boot image, also erase the U-boot environment variables defined by the
manufacturer or by previous users of your board:

nand erase 260000 80000

You can remove MMC card, then reset the IGEP board. You should see the freshly flashed
U-Boot starting.

You should now see the U-Boot prompt:

U-Boot #

Setting up Ethernet communication

Later on, we will transfer files from the development workstation to the board using the TFTP
protocol, which works on top of an Ethernet connection.

To start with, install and configure a TFTP server on your development workstation, as detailed
in the bootloader slides.

With a network cable, connect the Ethernet port of your board to the one of your computer.
If your computer already has a wired connection to the network, your instructor will provide
you with a USB Ethernet adapter. A new network interface, probably eth1 or eth2, should
appear on your Linux system.

To configure this network interface on the workstation side, click on the Network Manager
tasklet on your desktop, and select Edit Connections.

3Of course, this is not needed here if you erased the whole NAND contents as instructed earlier. However, we
prefer to write it here so that you don’t forget next time you write anything to NAND.

12 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

Select the new wired network connection:

In the IPv4 Settings tab, press the Add button and make the interface use a static IP ad-
dress, like 192.168.0.1 (of course, make sure that this address belongs to a separate network
segment from the one of the main company network).

© 2004-2014 Free Electrons, CC BY-SA license 13

http://free-electrons.com

Free Electrons Embedded Linux Training

You can use 255.255.255.0 as Netmask, and leave the Gateway field untouched (if you
click on the Gateway box, you will have to type a valid IP address, otherwise you won’t be
apply to click on the Apply button).

Now, configure the network on the board in U-Boot by setting the ipaddr and serverip
environment variables:

setenv ipaddr 192.168.0.100
setenv serverip 192.168.0.1

The first time you use your board, you also need to send the MAC address in U-boot:

setenv ethaddr 01:02:03:04:05:06

In case the board was previously configured in a different way, we also turn off automatic
booting after commands that can be used to copy a kernel to RAM:

setenv autostart no

To make these settings permanent, save the environment:

saveenv

Now switch your board off and on again4.

You can then test the TFTP connection. First, put a small text file in the directory exported
through TFTP on your development workstation. Then, from U-Boot, do:

tftp 0x80000000 textfile.txt

4Power cycling your board is needed to make your ethaddr permanent, for obscure reasons. If you don’t, U-boot
will complain that ethaddr is not set.

14 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

Caution: known issue in Ubuntu 12.04 and later: if this command doesn’t work, you may
have to stop the server and start it again every time you boot your workstation:

sudo service tftpd-hpa restart

The tftp command should have downloaded the textfile.txt file from your development
workstation into the board’s memory at location 0x80000000 (this location is part of the board
DRAM). You can verify that the download was successful by dumping the contents of the
memory:

md 0x80000000

We will see in the next labs how to use U-Boot to download, flash and boot a kernel.

Rescue binaries

If you have trouble generating binaries that work properly, or later make a mistake that causes
you to loose your MLO and u-boot.img files, you will find working versions under data/ in
the current lab directory.

© 2004-2014 Free Electrons, CC BY-SA license 15

http://free-electrons.com

Free Electrons Embedded Linux Training

Kernel sources
Objective: Learn how to get the kernel sources and patch them.

After this lab, you will be able to:

• Get the kernel sources from the official location

• Apply kernel patches

Setup

Create the $HOME/felabs/sysdev/kernel directory and go into it.

Get the sources

Go to the Linux kernel web site (http://www.kernel.org/) and identify the latest stable
version.

Just to make sure you know how to do it, check the version of the Linux kernel running on
your machine.

We will use linux-3.11.x, which this lab was tested with.

To practice the patch command later, download the full 3.10 sources. Unpack the archive,
which creates a linux-3.10 directory. Remember that you can use wget <URL> on the
command line to download files.

Apply patches

Download the 2 patch files corresponding to the latest 3.11 stable release: a first patch to move
from 3.10 to 3.11 and a second patch to move from 3.11 to 3.11.x.

Without uncompressing them (!), apply the 2 patches to the Linux source directory.

View one of the 2 patch files with vi or gvim (if you prefer a graphical editor), to understand
the information carried by such a file. How are described added or removed files?

Rename the linux-3.10 directory to linux-3.11.<x>.

16 © 2004-2014 Free Electrons, CC BY-SA license

http://www.kernel.org/
http://free-electrons.com

Free Electrons Embedded Linux Training

Kernel - Cross-compiling
Objective: Learn how to cross-compile a kernel for an OMAP target
platform.

After this lab, you will be able to:

• Set up a cross-compiling environment

• Configure the kernel Makefile accordingly

• Cross compile the kernel for the IGEPv2 arm board

• Use U-Boot to download the kernel

• Check that the kernel you compiled starts the system

Setup

Go to the $HOME/felabs/sysdev/kernel directory.

Install the following packages: libqt4-dev and u-boot-tools. libqt4-dev is needed
for the xconfig kernel configuration interface, and u-boot-tools is needed to build the
uImage kernel image file for U-Boot.

Target system

We are going to cross-compile and boot a Linux kernel for the IGEPv2 board.

Kernel sources

We will re-use the kernel sources downloaded and patched in the previous lab.

Cross-compiling environment setup

To cross-compile Linux, you need to have a cross-compiling toolchain. We will use the cross-
compiling toolchain that we previously produced, so we just need to make it available in the
PATH:

export PATH=/usr/local/xtools/arm-unknown-linux-uclibcgnueabi/bin:$PATH

Also, don’t forget to either:

• Define the value of the ARCH and CROSS_COMPILE variables in your environment (using
export)

• Or specify them on the command line at every invocation of make, i.e: make ARCH=...
CROSS_COMPILE=... <target>

© 2004-2014 Free Electrons, CC BY-SA license 17

http://free-electrons.com

Free Electrons Embedded Linux Training

Linux kernel configuration

By running make help, find the proper Makefile target to configure the kernel for the IGEPv2
board (hint: the default configuration is not named after the board, but after the CPU name).
Once found, use this target to configure the kernel with the ready-made configuration.

Don’t hesitate to visualize the new settings by running make xconfig afterwards!

In the kernel configuration:

• Disable support for the IGEPv2 board compiled into the kernel (CONFIG_MACH_IGEP0020).
We will boot our kernel with a device tree for our board, and won’t compile the board
description file (arch/arm/mach-omap2/board-igep0020.c in the kernel sources.).
Technically speaking, you can leave this option enabled, and still boot using a Device
Tree, but disabling it makes sure that your board will not fall back to legacy booting if
you do a mistake! You will have to review dependencies to be able to disable this kernel
configuration setting.

• As an experiment, let’s change the kernel compression from Gzip to XZ. This compression
algorithm is far more efficient than Gzip, in terms of compression ratio, at the expense of
a higher decompression time.

Cross compiling

You’re now ready to cross-compile your kernel. Simply run:

make

and wait a while for the kernel to compile. Don’t forget to use make -j<n> if you have
multiple cores on your machine!

Look at the end of the kernel build output to see which file contains the kernel image. You can
also see the Device Tree .dtb files which got compiled. Find which .dtb file corresponds to
your board.

However, the default image produced by the kernel build process is not suitable to be booted
from U-Boot. A post-processing operation must be performed using the mkimage tool pro-
vided by U-Boot developers. This tool has already been installed in your system as part of the
u-boot-tools package. To run the post-processing operation on the kernel image, simply
run:

make LOADADDR=0x80008000 uImage

The LOADADDR indicates to U-Boot where the kernel image should be loaded.

Setting up serial communication with the board

Plug the IGEP board on your computer. Start Picocom on /dev/ttyS0, or on /dev/ttyUSB0
if you are using a serial to USB adapter.

You should now see the U-Boot prompt:

U-Boot #

Make sure that the bootargs U-Boot environment variable is not set (it could remain from a
previous training session, and this could disturb the next lab):

setenv bootargs
saveenv

18 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

Load and boot the kernel using U-Boot

We will use TFTP to load the kernel image to the IGEP board:

• On your workstation, copy the uImage and DTB files to the directory exposed by the
TFTP server.

• On the target, load uImage from TFTP into RAM at address 0x80000000:
tftp 0x80000000 uImage

• Now, also load the DTB file into RAM at address 0x81000000:
tftp 0x81000000 omap3-igep0020.dtb

• Boot the kernel with its device tree:
bootm 0x80000000 - 0x81000000

You should see Linux boot and finally hang with the following message:

Waiting for root device /dev/mmcblk0p2...

This is expected: we haven’t provided a working root filesystem for our device yet.

You can now automate all this every time the board is booted or reset. Reset the board, and
specify a different bootcmd:
setenv bootcmd 'tftp 80000000 uImage; tftp 81000000 omap3-igep0020.dtb; bootm 80000000 - 81000000'
saveenv

Flashing the kernel and DTB in NAND flash

In order to let the kernel boot on the board autonomously, we can flash the kernel image and
DTB in the NAND flash available on the IGEP board. See the bootloader lab for details about
U-boot’s nand command.

After storing the first stage bootloader, U-boot and its environment variables, we will keep
special areas in NAND flash for the DTB and Linux kernel images:

So, let’s start by erasing the corresponding 128 KiB of NAND flash for the DTB:

nand erase 0x2e0000 0x20000
(NAND offset) (size)

Then, let’s errra the 5 MiB of NAND flash for the kernel image:

nand erase 0x300000 0x500000

Then, copy the DTB and kernel binaries from TFTP into memory, using the same addresses as
before.

© 2004-2014 Free Electrons, CC BY-SA license 19

http://free-electrons.com

Free Electrons Embedded Linux Training

Then, flash the DTB and kernel binaries:

nand write 0x81000000 0x2e0000 0x20000
(RAM addr) (NAND offset) (size)

nand write 0x80000000 0x300000 0x500000

Power your board off and on, to clear RAM contents. We should now be able to load the DTB
and kernel image from NAND and boot with:

nand read 0x81000000 0x2e0000 0x20000
nboot 0x80000000 0 0x300000

(RAM addr) (device) (NAND offset)
bootm 0x80000000 - 0x81000000

nboot copies the kernel to RAM, using the uImage headers to know how many bytes to
copy. To load the kernel to RAM, image, you could have used nand read 0x80000000
0x300000 0x500000, but you would have copied more bytes than the actual size of your
kernel. 5.

Write a U-Boot script that automates the DTB + kernel download and flashing procedure. Fi-
nally, adjust bootcmd so that the IGEP board boots using the kernel in Flash.

Now, power off the board and power it on again to check that it boots fine from NAND flash.
Check that this is really your own version of the kernel that’s running.

5nboot can save a lot of boot time, as it avoids having to copy a pessimistic number of bytes from flash to RAM.
Note that U-boot is not always configured with nboot support.

20 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

Tiny embedded system with BusyBox
Objective: making a tiny yet full featured embedded system

After this lab, you will:

• be able to configure and build a Linux kernel that boots on a directory on your worksta-
tion, shared through the network by NFS.

• be able to create and configure a minimalistic root filesystem from scratch (ex nihilo, out
of nothing, entirely hand made...) for the IGEP board

• understand how small and simple an embedded Linux system can be.

• be able to install BusyBox on this filesystem.

• be able to create a simple startup script based on /sbin/init.

• be able to set up a simple web interface for the target.

• have an idea of how much RAM a Linux kernel smaller than 1 MB needs.

Lab implementation

While (s)he develops a root filesystem for a device, a developer needs to make frequent changes
to the filesystem contents, like modifying scripts or adding newly compiled programs.

It isn’t practical at all to reflash the root filesystem on the target every time a change is made.
Fortunately, it is possible to set up networking between the development workstation and the
target. Then, workstation files can be accessed by the target through the network, using NFS.

Unless you test a boot sequence, you no longer need to reboot the target to test the impact of
script or application updates.

Setup

Go to the $HOME/felabs/sysdev/tinysystem/ directory.

© 2004-2014 Free Electrons, CC BY-SA license 21

http://free-electrons.com

Free Electrons Embedded Linux Training

Kernel configuration

We will re-use the kernel sources from our previous lab, in $HOME/felabs/sysdev/kernel/.

In the kernel configuration built in the previous lab, verify that you have all options needed for
booting the system using a root filesystem mounted over NFS, and if necessary, enable them
and rebuild your kernel.

Setting up the NFS server

Create a nfsroot directory in the current lab directory. This nfsroot directory will be used
to store the contents of our new root filesystem.

Install the NFS server by installing the nfs-kernel-server package if you don’t have it yet.
Once installed, edit the /etc/exports file as root to add the following line, assuming that
the IP address of your board will be 192.168.0.100:

/home/<user>/felabs/sysdev/tinysystem/nfsroot 192.168.0.100(rw,no_root_squash,no_subtree_check)

Make sure that the path and the options are on the same line. Also make sure that there is no
space between the IP address and the NFS options, otherwise default options will be used for
this IP address, causing your root filesystem to be read-only.

Then, restart the NFS server:

sudo /etc/init.d/nfs-kernel-server restart

Booting the system

First, boot the board to the U-Boot prompt. Before booting the kernel, we need to tell it that the
root filesystem should be mounted over NFS, by setting some kernel parameters.

Use the following U-Boot command to do so, in just 1 line (Caution: in ttyO2 below, it’s the
capital letter O, like in OMAP and not the number zero):

setenv bootargs console=ttyO2,115200 root=/dev/nfs ip=192.168.0.100
nfsroot=192.168.0.1:/home/<user>/felabs/sysdev/tinysystem/nfsroot rw

Of course, you need to adapt the IP addresses to your exact network setup. Save the environ-
ment variables (with saveenv).

You will later need to make changes to the bootargs value. Don’t forget you can do this with
the editenv command.

Now, boot your system. The kernel should be able to mount the root filesystem over NFS:

[7.467895] VFS: Mounted root (nfs filesystem) readonly on device 0:12.

If the kernel fails to mount the NFS filesystem, look carefully at the error messages in the
console. If this doesn’t give any clue, you can also have a look at the NFS server logs in /var/
log/syslog.

However, at this stage, the kernel should stop because of the below issue:

[7.476715] devtmpfs: error mounting -2

This happens because the kernel is trying to mount the devtmpfs filesystem in /dev/ in the root
filesystem. To address this, create a dev directory under nfsroot and reboot.

Now, the kernel should complain for the last time, saying that it can’t find an init application:

22 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

Kernel panic - not syncing: No init found. Try passing init= option to kernel.
See Linux Documentation/init.txt for guidance.

Obviously, our root filesystem being mostly empty, there isn’t such an application yet. In the
next paragraph, you will add Busybox to your root filesystem and finally make it usable.

Root filesystem with Busybox

Download the latest BusyBox 1.21.x release.

To configure BusyBox, we won’t be able to use make xconfig, which is currently broken in
Ubuntu 12.04, because of Qt library dependencies.

We are going to use make gconfig this time. Before doing this, install the required packages:

sudo apt-get install libglade2-dev

Now, configure BusyBox with the configuration file provided in the data/ directory (remem-
ber that the Busybox configuration file is .config in the Busybox sources).

If you don’t use the BusyBox configuration file that we provide, at least, make sure you build
BusyBox statically! Compiling Busybox statically in the first place makes it easy to set up the
system, because there are no dependencies on libraries. Later on, we will set up shared libraries
and recompile Busybox.

Build BusyBox using the toolchain that you used to build the kernel.

Going back to the BusyBox configuration interface specify the installation directory for Busy-
Box 6. It should be the path to your nfsroot directory.

Now run make install to install BusyBox in this directory.

Try to boot your new system on the board. You should now reach a command line prompt,
allowing you to execute the commands of your choice.

Virtual filesystems

Run the ps command. You can see that it complains that the /proc directory does not exist.
The ps command and other process-related commands use the proc virtual filesystem to get
their information from the kernel.

From the Linux command line in the target, create the proc, sys and etc directories in your
root filesystem.

Now mount the proc virtual filesystem. Now that /proc is available, test again the ps com-
mand.

Note that you can also halt your target in a clean way with the halt command, thanks to proc
being mounted.

System configuration and startup

The first userspace program that gets executed by the kernel is /sbin/init and its configu-
ration file is /etc/inittab.

In the BusyBox sources, read details about /etc/inittab in the examples/inittab file.

6You will find this setting in Install Options -> BusyBox installation prefix.

© 2004-2014 Free Electrons, CC BY-SA license 23

http://free-electrons.com

Free Electrons Embedded Linux Training

Then, create a /etc/inittab file and a /etc/init.d/rcS startup script declared in /etc/
inittab. In this startup script, mount the /proc and /sys filesystems.

Any issue after doing this?

Switching to shared libraries

Take the hello.c program supplied in the lab data directory. Cross-compile it for ARM,
dynamically-linked with the libraries, and run it on the target.

You will first encounter a not found error caused by the absence of the ld-uClibc.so.0
executable, which is the dynamic linker required to execute any program compiled with shared
libraries. Using the find command (see examples in your command memento sheet), look for
this file in the toolchain install directory, and copy it to the lib/ directory on the target.

Then, running the executable again and see that the loader executes and finds out which shared
libraries are missing. Similarly, find these libraries in the toolchain and copy them to lib/ on
the target.

Once the small test program works, we are going to recompile Busybox without the static com-
pilation option, so that Busybox takes advantages of the shared libraries that are now present
on the target.

Before doing that, measure the size of the busybox executable.

Then, build Busybox with shared libraries, and install it again on the target filesystem. Make
sure that the system still boots and see how much smaller the busybox executable got.

Implement a web interface for your device

Replicate data/www/ to the /www directory in your target root filesystem.

Now, run the BusyBox http server from the target command line:

/usr/sbin/httpd -h /www/

It will automatically background itself.

If you use a proxy, configure your host browser so that it doesn’t go through the proxy to con-
nect to the target IP address, or simply disable proxy usage. Now, test that your web interface
works well by opening http://192.168.0.100 on the host.

See how the dynamic pages are implemented. Very simple, isn’t it?

24 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

Filesystems - Block file systems
Objective: configure and boot an embedded Linux system relying on
block storage

After this lab, you will be able to:

• Manage partitions on block storage.

• Produce file system images.

• Configure the kernel to use these file systems

• Use the tmpfs file system to store temporary files

Goals

After doing the A tiny embedded system lab, we are going to copy the filesystem contents to the
MMC flash drive. The filesystem will be split into several partitions, and your IGEP board will
be booted with this MMC card, without using NFS anymore.

Setup

Throughout this lab, we will continue to use the root filesystem we have created in the $HOME/
felabs/sysdev/tinysystem/nfsroot directory, which we will progressively adapt to
use block filesystems.

Filesystem support in the kernel

Recompile your kernel with support for SquashFS and ext3.

Boot your board with this new kernel and on the NFS filesystem you used in this previous lab.7

Add partitions to the MMC card

Using cfdisk 8, add two additional partitions to the MMC card (in addition to the existing
boot partition created in the bootloaders lab):

• One partition, 8 MB big 9, that will be used for the root filesystem. Due to the geometry
of the device, the partition might be larger than 8 MB, but it does not matter. Keep the
Linux type for the partition.

• One partition, that fills the rest of the MMC card, that will be used for the data filesystem.
Here also, keep the Linux type for the partition.

7If you didn’t do or complete the tinysystem lab, you can use the data/rootfs directory instead.
8Now that one partition already exists, you don’t have to specify headers and sectors again. Just run cfdisk /

dev/sdx
9For the needs of our system, the partition could even be much smaller, and 1 MB would be enough. However, with

the 8 GB SD cards that we use in our labs, 8 MB will be the smallest partition that cfdisk will allow you to create.

© 2004-2014 Free Electrons, CC BY-SA license 25

http://free-electrons.com

Free Electrons Embedded Linux Training

At the end, you should have three partitions: one for the boot, one for the root filesystem and
one for the data filesystem.

Data partition on the MMC disk

Caution: read this carefully before proceeding. You could destroy existing partitions on
your PC!
Do not make the confusion between the device that is used by your board to represent your
MMC disk (/dev/mmcblk0) or /dev/sda if you are connecting the MMC card to the board
with a USB card reader), and the device that your workstation uses (probably /dev/sdb).
So, don’t use the /dev/sdaX device to reflash your MMC disk from your workstation. Peo-
ple have already destroyed their Windows partition by making this mistake.

Using the mkfs.ext3 create a journaled file system on the third partition of the MMC disk.
Remember that you can use the -L option to set a volume name for the partition. Move the
contents of the www/upload/files directory (in your target root filesystem) into this new
partition. The goal is to use the third partition of the MMC card as the storage for the uploaded
images.

Connect the MMC disk to your board (after rebooting the board... that’s currently needed with
Linux 3.11 with the Device Tree supported IGEPv2 board). You should see the MMC partitions
in /proc/partitions.

Mount this third partition on /www/upload/files.

Once this works, modify the startup scripts in your root filesystem to do it automatically at
boot time.

Reboot your target system and with the mount command, check that /www/upload/files is
now a mount point for the third MMC disk partition. Also make sure that you can still upload
new images, and that these images are listed in the web interface.

Adding a tmpfs partition for log files

For the moment, the upload script was storing its log file in /www/upload/files/upload.
log. To avoid seeing this log file in the directory containing uploaded files, let’s store it in
/var/log instead.

Add the /var/log/ directory to your root filesystem and modify the startup scripts to mount
a tmpfs filesystem on this directory. You can test your tmpfs mount command line on the
system before adding it to the startup script, in order to be sure that it works properly.

Modify the www/cgi-bin/upload.cfg configuration file to store the log file in /var/log/
upload.log. You will lose your log file each time you reboot your system, but that’s OK
in our system. That’s what tmpfs is for: temporary data that you don’t need to keep across
system reboots.

Reboot your system and check that it works as expected.

Making a SquashFS image

We are going to store the root filesystem in a SquashFS filesystem in the second partition of the
MMC disk.

26 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

In order to create SquashFS images on your host, you need to install the squashfs-tools
package. Now create a SquashFS image of your NFS root directory.

Finally, using the dd command, copy the file system image to the second partition of the MMC
disk.

Booting on the SquashFS partition

In the U-boot shell, configure the kernel command line to use the second partition of the MMC
disk as the root file system. Also add the rootwait boot argument, to wait for the MMC disk
to be properly initialized before trying to mount the root filesystem. Since the MMC cards are
detected asynchronously by the kernel, the kernel might try to mount the root filesystem too
early without rootwait.

Check that your system still works. Congratulations if it does!

Store the kernel image and DTB on the MMC card

Finally, copy the uImage kernel image and DTB to the first partition of the MMC card (the
partition called boot), and adjust the bootcmd of U-Boot so that it loads the kernel and DTB
from the MMC card instead of loading them through the network10.

10Go back to the instructions in the ”Bootloader - U-Boot” lab if you don’t remember how to load files from an MMC
card.

© 2004-2014 Free Electrons, CC BY-SA license 27

http://free-electrons.com

Free Electrons Embedded Linux Training

Filesystems - Flash file systems
Objective: Understand flash file systems usage and their integration on
the target

After this lab, you will be able to:

• Prepare filesystem images and flash them.

• Define partitions in embedded flash storage.

Setup

Stay in $HOME/felabs/sysdev/tinysystem. Install the mtd-utils package, which will
be useful to create JFFS2 filesystem images.

Goals

Instead of using an external MMC card as in the previous lab, we will make our system use its
internal flash storage.

The root filesystem will still be in a read-only filesystem, put on an MTD partition. Read/write
data will be stored in a JFFS2 filesystem in another MTD partition. The layout of the internal
NAND flash will be:

Enabling NAND flash and filesystems

Apply the 0001-ARM-omap-switch-back-to-SW-ECC-on-IGEP.patch patch available
in the $HOME/felabs/sysdev/flash-filesystems/data directory to your kernel tree.
This is a Device Tree patch that fixes a problem of the 3.11.x/3.12 kernel, which caused the
kernel to use a different ECC scheme than the U-Boot bootloader, making it impossible to flash
from U-Boot, and read from the kernel.

After applying this patch, recompile your kernel with support for JFFS2 and for support for
MTD partitions specified in the kernel command line (CONFIG_MTD_CMDLINE_PARTS).

Also enable support for the flash chips on the board (CONFIG_MTD_NAND_OMAP2). You also
need to enable support for hardware BCH error correction (CONFIG_NAND_OMAP_BCH) and
select the 8 bits / 512 bytes (recommended) mode (MTD_NAND_OMAP_BCH8).

28 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

Last but not least, disable CONFIG_PROVE_LOCKING. This option is currently causing prob-
lems with the JFFS2 filesystem. This option is in Kernel Hacking → Lock debugging:
prove locking correctness.

After compiling your kernel, update the DTB file used by your board (remember that we ap-
plied a Device Tree patch).

You will update your kernel image on flash in the next section.

Filesystem image preparation

Find the erase block size of the NAND flash device in your board.

Prepare a JFFS2 filesystem image from the /www/upload/files directory from the previous
lab.

Modify the /etc/init.d/rcS file to mount a JFFS2 filesystem on the seventh flash partition
(we will declare flash partitions in the next section), instead of an ext3 filesystem on the third
MMC disk partition.

Create a JFFS2 image for your root filesystem, with the same options as for the data filesystem.

MTD partitioning and flashing

Look at the way default flash partitions are defined in the board Device Tree sources (arch/
arm/boot/dts/omap3-igep0020.dts).

However, they do not match the way we wish to organize our flash storage. Therefore, we will
define our own partitions at boot time, on the kernel command line.

Enter the U-Boot shell and erase NAND flash, from offset 0x300000, up to the end of the NAND
flash storage. You’ll have to compute the remaining size of the flash, from 0x300000 to the end.
Remember that you can look at U-Boot booting messages to find what the size of the NAND
flash is.

Before flashing JFFS2 images, make sure they will be flashed during the software ECC scheme,
by running the nandecc sw command in U-Boot.

Using the tftp command, download and flash the new kernel image at the correct location.

Using the tftp command, download and flash the JFFS2 image of the root filesystem the
correct location.

Using the tftp command, download and flash the JFFS2 image of the data filesystem at the
correction location.

Don’t forget that you can write U-Boot scripts to automate these procedures. This is very handy
to avoid mistakes when typing commands!

Set the bootargs variable so that:

• You define the 7 MTD partitions, as detailed previously

• The root filesystem is mounted from the 6th partition, and is mounted read-only (kernel
parameter ro). Important: even if this partition is mounted read-only, the MTD parti-
tion itself must be declared as read-write. Otherwise, Linux won’t be able to perform
ECC checks on it, which involve both reading and writing.

© 2004-2014 Free Electrons, CC BY-SA license 29

http://free-electrons.com

Free Electrons Embedded Linux Training

Boot the target, check that MTD partitions are well configured, and that your system still works
as expected. Your root filesystem should be mounted read-only, while the data filesystem
should be mounted read-write, allowing you to upload data using the web server.

30 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

Third party libraries and applications
Objective: Learn how to leverage existing libraries and applications: how
to configure, compile and install them

To illustrate how to use existing libraries and applications, we will extend the small root filesys-
tem built in the A tiny embedded system lab to add the DirectFB graphic library and sample ap-
plications using this library. Because many boards do not have a display, we will test the result
of this lab with QEMU.

We’ll see that manually re-using existing libraries is quite tedious, so that more automated
procedures are necessary to make it easier. However, learning how to perform these operations
manually will significantly help you when you’ll face issues with more automated tools.

Figuring out library dependencies

As most libraries, DirectFB depends on other libraries, and these dependencies are different
depending on the configuration chosen for DirectFB. In our case, we will enable support for:

• PNG image loading

• JPEG image loading

• Font rendering using a font engine

The PNG image loading feature will be provided by the libpng library, the JPEG image loading
feature by the jpeg library and the font engine will be implemented by the FreeType library. The
libpng library itself depends on the zlib compression/decompression library. So, we end up
with the following dependency tree:

Of course, all these libraries rely on the C library, which is not mentioned here, because it is
already part of the root filesystem built in the A tiny embedded system lab. You might wonder
how to figure out this dependency tree by yourself. Basically, there are several ways, that can
be combined:

© 2004-2014 Free Electrons, CC BY-SA license 31

http://free-electrons.com

Free Electrons Embedded Linux Training

• Read the library documentation, which often mentions the dependencies;

• Read the help message of the configure script (by running ./configure --help).

• By running the configure script, compiling and looking at the errors.

To configure, compile and install all the components of our system, we’re going to start from
the bottom of the tree with zlib, then continue with libpng, jpeg and FreeType, to finally compile
DirectFB and the DirectFB sample applications.

Preparation

For our cross-compilation work, we will need to separate spaces:

• A staging space in which we will directly install all the packages: non-stripped versions
of the libraries, headers, documentation and other files needed for the compilation. This
staging space can be quite big, but will not be used on our target, only for compiling
libraries or applications;

• A target space, in which we will copy only the required files from the staging space: bina-
ries and libraries, after stripping, configuration files needed at runtime, etc. This target
space will take a lot less space than the staging space, and it will contain only the files that
are really needed to make the system work on the target.

To sum up, the staging space will contain everything that’s needed for compilation, while the
target space will contain only what’s needed for execution.

So, in $HOME/felabs/sysdev/thirdparty, create two directories: staging and target.

For the target, we need a basic system with BusyBox, device nodes and initialization scripts.
We will re-use the system built in the A tiny embedded system lab, so copy this system in the
target directory:

sudo cp -a $HOME/felabs/sysdev/tinysystem/nfsroot/* target/

The copy must be done as root, because the root filesystem of the A tiny embedded system lab
contains a few device nodes.

Testing

Make sure the target/ directory is exported by your NFS server by adding the following line
to /etc/exports:
/home/<user>/felabs/sysdev/thirdparty/target 172.20.0.2(rw,no_root_squash,no_subtree_check)

And restart your NFS server.

Install the QEMU emulator for non-x86 architectures by installing the qemu-kvm-extras
package.

Then, run QEMU with the provided script:

./run_qemu

The system should boot and give you a prompt.

zlib

Zlib is a compression/decompression library available at http://www.zlib.net/. Down-
load version 1.2.5, and extract it in $HOME/felabs/sysdev/thirdparty/.

32 © 2004-2014 Free Electrons, CC BY-SA license

http://www.zlib.net/
http://free-electrons.com

Free Electrons Embedded Linux Training

By looking at the configure script, we see that this configure script has not been generated
by autoconf (otherwise it would contain a sentence like Generated by GNU Autoconf 2.62).
Moreover, the project doesn’t use automake since there are no Makefile.am files. So zlib uses a
custom build system, not a build system based on the classical autotools.

Let’s try to configure and build zlib:

./configure
make

You can see that the files are getting compiled with gcc, which generates code for x86 and not
for the target platform. This is obviously not what we want, so we tell the configure script to
use the ARM cross-compiler:

CC=arm-linux-gcc ./configure

Of course, the arm-linux-gcc cross-compiler must be in your PATH prior to running the
configure script. The CC environment variable is the classical name for specifying the compiler
to use. Moreover, the beginning of the configure script tells us about this:

To impose specific compiler or flags or
install directory, use for example:
prefix=$HOME CC=cc CFLAGS="-O4" ./configure

Now when you compile with make, the cross-compiler is used. Look at the result of compiling:
a set of object files, a file libz.a and set of libz.so* files.

The libz.a file is the static version of the library. It has been generated using the following
command:

ar rc libz.a adler32.o compress.o crc32.o gzio.o uncompr.o deflate.o \
trees.o zutil.o inflate.o infback.o inftrees.o inffast.o

It can be used to compile applications linked statically with the zlib library, as shown by the
compilation of the example program:

arm-linux-gcc -O3 -DUSE_MMAP -o example example.o -L. libz.a

In addition to this static library, there is also a dynamic version of the library, the libz.so*
files. The shared library itself is libz.so.1.2.5, it has been generated by the following
command line:

arm-linux-gcc -shared -Wl,-soname,libz.so.1 -o libz.so.1.2.5 \
adler32.o compress.o crc32.o gzio.o uncompr.o \
deflate.o trees.o zutil.o inflate.o infback.o \
inftrees.o inffast.o

And creates symbolic links libz.so and libz.so.1:

ln -s libz.so.1.2.5 libz.so
ln -s libz.so.1.2.5 libz.so.1

These symlinks are needed for two different reasons:

• libz.so is used at compile time when you want to compile an application that is dy-
namically linked against the library. To do so, you pass the -lLIBNAME option to the
compiler, which will look for a file named lib<LIBNAME>.so. In our case, the compila-
tion option is -lz and the name of the library file is libz.so. So, the libz.so symlink
is needed at compile time;

© 2004-2014 Free Electrons, CC BY-SA license 33

http://free-electrons.com

Free Electrons Embedded Linux Training

• libz.so.1 is needed because it is the SONAME of the library. SONAME stands for
Shared Object Name. It is the name of the library as it will be stored in applications linked
against this library. It means that at runtime, the dynamic loader will look for exactly this
name when looking for the shared library. So this symbolic link is needed at runtime.

To know what’s the SONAME of a library, you can use:

arm-linux-readelf -d libz.so.1.2.5

and look at the (SONAME) line. You’ll also see that this library needs the C library, because of
the (NEEDED) line on libc.so.0.

The mechanism of SONAME allows to change the library without recompiling the applications
linked with this library. Let’s say that a security problem is found in zlib 1.2.5, and fixed in
the next release 1.2.6. You can recompile the library, install it on your target system, change
the link libz.so.1 so that it points to libz.so.1.2.6 and restart your applications. And
it will work, because your applications don’t look specifically for libz.so.1.2.5 but for the
SONAME libz.so.1. However, it also means that as a library developer, if you break the
ABI of the library, you must change the SONAME: change from libz.so.1 to libz.so.2.

Finally, the last step is to tell the configure script where the library is going to be installed.
Most configure scripts consider that the installation prefix is /usr/local/ (so that the library
is installed in /usr/local/lib, the headers in /usr/local/include, etc.). But in our
system, we simply want the libraries to be installed in the /usr prefix, so let’s tell the configure
script about this:

CC=arm-linux-gcc ./configure --prefix=/usr
make

For the zlib library, this option may not change anything to the resulting binaries, but for safety,
it is always recommended to make sure that the prefix matches where your library will be
running on the target system.

Do not confuse the prefix (where the application or library will be running on the target sys-
tem) from the location where the application or library will be installed on your host while
building the root filesystem. For example, zlib will be installed in $HOME/felabs/sysdev/
thirdparty/target/usr/lib/ because this is the directory where we are building the root
filesystem, but once our target system will be running, it will see zlib in /usr/lib. The prefix
corresponds to the path in the target system and never on the host. So, one should never pass
a prefix like $HOME/felabs/sysdev/thirdparty/target/usr, otherwise at runtime, the
application or library may look for files inside this directory on the target system, which ob-
viously doesn’t exist! By default, most build systems will install the application or library in
the given prefix (/usr or /usr/local), but with most build systems (including autotools), the
installation prefix can be overriden, and be different from the configuration prefix.

First, let’s make the installation in the staging space:

make DESTDIR=../staging install

Now look at what has been installed by zlib:

• A manpage in /usr/share/man

• A pkgconfig file in /usr/lib/pkgconfig. We’ll come back to these later

• The shared and static versions of the library in /usr/lib

• The headers in /usr/include

Finally, let’s install the library in the target space:

34 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

1. Create the target/usr/lib directory, it will contain the stripped version of the library

2. Copy the dynamic version of the library. Only libz.so.1 and libz.so.1.2.5 are
needed, since libz.so.1 is the SONAME of the library and libz.so.1.2.5 is the real
binary:
cp -a libz.so.1* ../target/usr/lib

3. Strip the library:
arm-linux-strip ../target/usr/lib/libz.so.1.2.5

Ok, we’re done with zlib!

Libpng

Download libpng from its official website at http://www.libpng.org/pub/png/libpng.
html. We tested the lab with version 1.4.3. Please stick to this version as newer versions are
incompatible with the DirectFB version we use in this lab.

Once uncompressed, we quickly discover that the libpng build system is based on the autotools,
so we will work with a regular configure script.

As we’ve seen previously, if we just run ./configure, the build system will use the native
compiler to build the library, which is not what we want. So let’s tell the build system to use
the cross-compiler:

CC=arm-linux-gcc ./configure

Quickly, you should get an error saying:

configure: error: cannot run C compiled programs.
If you meant to cross compile, use `--host'.
See `config.log' for more details.
If you look at config.log, you quickly understand what's going on:
configure:2942: checking for C compiler default output file name
configure:2964: arm-linux-gcc conftest.c >&5
configure:2968: $? = 0
configure:3006: result: a.out
configure:3023: checking whether the C compiler works
configure:3033: ./a.out
./configure: line 3035: ./a.out: cannot execute binary file

The configure script compiles a binary with the cross-compiler and then tries to run it on the
development workstation. Obviously, it cannot work, and the system says that it cannot
execute binary file. The job of the configure script is to test the configuration of the
system. To do so, it tries to compile and run a few sample applications to test if this library is
available, if this compiler option is supported, etc. But in our case, running the test examples is
definitely not possible. We need to tell the configure script that we are cross-compiling, and this
can be done using the --build and --host options, as described in the help of the configure
script:

System types:
--build=BUILD configure for building on BUILD [guessed]
--host=HOST cross-compile to build programs to run on HOST [BUILD]

The --build option allows to specify on which system the package is built, while the --
host option allows to specify on which system the package will run. By default, the value of
the --build option is guessed and the value of --host is the same as the value of the --
build option. The value is guessed using the ./config.guess script, which on your system

© 2004-2014 Free Electrons, CC BY-SA license 35

http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html
http://free-electrons.com

Free Electrons Embedded Linux Training

should return i686-pc-linux-gnu. See http://www.gnu.org/software/autoconf/
manual/html_node/Specifying-Names.html for more details on these options.

So, let’s override the value of the --host option:

CC=arm-linux-gcc ./configure --host=arm-linux

Now, we go a little bit further in the execution of the configure script, until we reach:

checking for zlibVersion in -lz... no
configure: error: zlib not installed

Again, we can check in config.log what the configure script is trying to do:

configure:12452: checking for zlibVersion in -lz
configure:12487: arm-linux-gcc -o conftest -g -O2 conftest.c -lz -lm >&5
/usr/local/xtools/arm-unknown-linux-uclibcgnueabi/[...]usr/bin/[...]/ld: cannot find -lz
collect2: ld returned 1 exit status

The configure script tries to compile an application against zlib (as can be seen from the -lz
option): libpng uses the zlib library, so the configure script wants to make sure this library is
already installed. Unfortunately, the ld linker doesn’t find this library. So, let’s tell the linker
where to look for libraries using the -L option followed by the directory where our libraries
are (in staging/usr/lib). This -L option can be passed to the linker by using the LDFLAGS
at configure time, as told by the help text of the configure script:

LDFLAGS linker flags, e.g. -L<lib dir> if you have
libraries in a nonstandard directory <lib dir>

Let’s use this LDFLAGS variable:

LDFLAGS=-L$HOME/felabs/sysdev/thirdparty/staging/usr/lib \
CC=arm-linux-gcc \
./configure --host=arm-linux

Let’s also specify the prefix, so that the library is compiled to be installed in /usr and not
/usr/local:

LDFLAGS=-L$HOME/felabs/sysdev/thirdparty/staging/usr/lib \
CC=arm-linux-gcc \

./configure --host=arm-linux --prefix=/usr

Then, run the compilation using make. Quickly, you should get a pile of error messages, start-
ing with:

In file included from png.c:13:
png.h:470:18: error: zlib.h: No such file or directory

Of course, since libpng uses the zlib library, it includes its header file! So we need to tell the
C compiler where the headers can be found: there are not in the default directory /usr/
include/, but in the /usr/include directory of our staging space. The help text of the
configure script says:

CPPFLAGS C/C++/Objective C preprocessor flags,
e.g. -I<includedir> if you have headers
in a nonstandard directory <includedir>

Let’s use it:

LDFLAGS=-L$HOME/felabs/sysdev/thirdparty/staging/usr/lib \
CPPFLAGS=-I$HOME/felabs/sysdev/thirdparty/staging/usr/include \
CC=arm-linux-gcc \

36 © 2004-2014 Free Electrons, CC BY-SA license

http://www.gnu.org/software/autoconf/manual/html_node/Specifying-Names.html
http://www.gnu.org/software/autoconf/manual/html_node/Specifying-Names.html
http://free-electrons.com

Free Electrons Embedded Linux Training

./configure --host=arm-linux --prefix=/usr

Then, run the compilation with make. Hopefully, it works!

Let’s now begin the installation process. Before really installing in the staging directory, let’s
install in a dummy directory, to see what’s going to be installed (this dummy directory will
not be used afterwards, it is only to verify what will be installed before polluting the staging
space):

make DESTDIR=/tmp/libpng/ install

The DESTDIR variable can be used with all Makefiles based on automake. It allows to override
the installation directory: instead of being installed in the configuration-prefix, the files will be
installed in DESTDIR/configuration-prefix.

Now, let’s see what has been installed in /tmp/libpng/:

./usr/lib/libpng.la -> libpng14.la

./usr/lib/libpng14.a

./usr/lib/libpng14.la

./usr/lib/libpng14.so -> libpng14.so.14.3.0

./usr/lib/libpng14.so.14 -> libpng14.so.14.3.0

./usr/lib/libpng14.so.14.3.0

./usr/lib/libpng.a -> libpng14.a

./usr/lib/libpng.la -> libpng14.la

./usr/lib/libpng.so -> libpng14.so

./usr/lib/pkgconfig/libpng.pc -> libpng14.pc

./usr/lib/pkgconfig/libpng14.pc

./usr/share/man/man5/png.5

./usr/share/man/man3/libpngpf.3

./usr/share/man/man3/libpng.3

./usr/include/pngconf.h -> libpng14/pngconf.h

./usr/include/png.h -> libpng14/png.h

./usr/include/libpng14/pngconf.h

./usr/include/libpng14/png.h

./usr/bin/libpng-config -> libpng14-config

./usr/bin/libpng14-config

So, we have:

• The library, with many symbolic links

– libpng14.so.14.3.0, the binary of the current version of library

– libpng14.so.14, a symbolic link to libpng14.so.14.3.0, so that applications
using libpng14.so.14 as the SONAME of the library will find nit and use the
current version

– libpng14.so is a symbolic link to libpng14.so.14.3.0. So it points to the
current version of the library, so that new applications linked with -lpng14 will
use the current version of the library libpng.so is a symbolic link to libpng14.so.
So applications linked with -lpng will be linked with the current version of the
library (and not the obsolete one since we don’t want anymore to link applications
against the obsolete version!)

– libpng14.a is a static version of the library

– libpng.a is a symbolic link to libpng14.a, so that applications statically linked
with libpng.a will in fact use the current version of the library

© 2004-2014 Free Electrons, CC BY-SA license 37

http://free-electrons.com

Free Electrons Embedded Linux Training

– libpng14.la is a configuration file generated by libtool which gives configuration
details for the library. It will be used to compile applications and libraries that rely
on libpng.

– libpng.la is a symbolic link to libpng14.la: we want to use the current version
for new applications, once again.

• The pkg-config files, in /usr/lib/pkgconfig/. These configuration files are used by
the pkg-config tool that we will cover later. They describe how to link new applications
against the library.

• The manual pages in /usr/share/man/, explaining how to use the library.

• The header files, in /usr/include/, needed to compile new applications or libraries
against libpng. They define the interface to libpng. There are symbolic links so that one
can choose between the following solutions:

– Use #include <png.h> in the source code and compile with the default compiler
flags

– Use #include <png.h> in the source code and compile with -I/usr/include/
libpng14

– Use #include <libpng14/png.h> in the source and compile with the default
compiler flags

• The /usr/bin/libpng14-config tool and its symbolic link /usr/bin/libpng-config.
This tool is a small shell script that gives configuration information about the libraries,
needed to know how to compile applications/libraries against libpng. This mechanism
based on shell scripts is now being superseded by pkg-config, but as old applications or
libraries may rely on it, it is kept for compatibility.

Now, let’s make the installation in the staging space:

make DESTDIR=$HOME/felabs/sysdev/thirdparty/staging/ install

Then, let’s install only the necessary files in the target space, manually:

cd ..
cp -a staging/usr/lib/libpng14.so.* target/usr/lib
arm-linux-strip target/usr/lib/libpng14.so.14.3.0

And we’re finally done with libpng!

libjpeg

Now, let’s work on libjpeg. Download it from http://www.ijg.org/files/jpegsrc.v8.
tar.gz and extract it.

Configuring libjpeg is very similar to the configuration of the previous libraries:

CC=arm-linux-gcc ./configure --host=arm-linux \
--prefix=/usr

Of course, compile the library:

make

Installation to the staging space can be done using the classical DESTDIR mechanism:

make DESTDIR=$HOME/felabs/sysdev/thirdparty/staging/ install

38 © 2004-2014 Free Electrons, CC BY-SA license

http://www.ijg.org/files/jpegsrc.v8.tar.gz
http://www.ijg.org/files/jpegsrc.v8.tar.gz
http://free-electrons.com

Free Electrons Embedded Linux Training

And finally, install manually the only needed files at runtime in the target space:

cd ..
cp -a staging/usr/lib/libjpeg.so.8* target/usr/lib/
arm-linux-strip target/usr/lib/libjpeg.so.8.0.0

Done with libjpeg!

FreeType

The FreeType library is the next step. Grab the tarball from http://www.freetype.org.
We tested the lab with version 2.4.2 but more other versions may also work. Uncompress the
tarball.

The FreeType build system is a nice example of what can be done with a good usage of the
autotools. Cross-compiling FreeType is very easy. First, the configure step:

CC=arm-linux-gcc ./configure --host=arm-linux \
--prefix=/usr

Then, compile the library:

make

Install it in the staging space:

make DESTDIR=$HOME/felabs/sysdev/thirdparty/staging/ install

And install only the required files in the target space:

cd ..
cp -a staging/usr/lib/libfreetype.so.6* target/usr/lib/
arm-linux-strip target/usr/lib/libfreetype.so.6.6.0

Done with FreeType!

DirectFB

Finally, with zlib, libpng, jpeg and FreeType, all the dependencies of DirectFB are ready. We
can now build the DirectFB library itself. Download it from the official website, at http:
//www.directfb.org/. We tested version 1.4.5 of the library. As usual, extract the tarball.

Before configuring DirectFB, let’s have a look at the available options by running ./configure
--help. A lot of options are available. We see that:

• Support for Fbdev (the Linux framebuffer) is automatically detected, so that’s fine;

• Support for PNG, JPEG and FreeType is enabled by default, so that’s fine;

• We should specify a value for --with-gfxdrivers. The hardware emulated by QEMU
doesn’t have any accelerated driver in DirectFB, so we’ll pass --with-gfxdrivers=
none;

• We should specify a value for --with-inputdrivers. We’ll need keyboard (for the
keyboard) and linuxinput to support the Linux Input subsystem. So we’ll pass --with-
inputdrivers=keyboard,linuxinput

So, let’s begin with a configure line like:

© 2004-2014 Free Electrons, CC BY-SA license 39

http://www.freetype.org
http://www.directfb.org/
http://www.directfb.org/
http://free-electrons.com

Free Electrons Embedded Linux Training

CC=arm-linux-gcc ./configure --host=arm-linux \
--prefix=/usr --with-gfxdrivers=none \
--with-inputdrivers=keyboard,linuxinput

In the output, we see:

*** JPEG library not found. JPEG image provider will not be built.

So let’s look in config.log for the JPEG issue. By search for jpeg, you can find:

configure:24701: arm-linux-gcc -o conftest [...] conftest.c -ljpeg -ldl -lpthread >&5
/usr/local/xtools/arm-unknown-linux-uclibcgnueabi/[...]/bin/ld: cannot find -ljpeg

Of course, it cannot find the jpeg library, since we didn’t pass the proper LDFLAGS and CFLAGS
telling where our libraries are. So let’s configure again with:

LDFLAGS=-L$HOME/felabs/sysdev/thirdparty/staging/usr/lib \
CPPFLAGS=-I$HOME/felabs/sysdev/thirdparty/staging/usr/include \
CC=arm-linux-gcc \
./configure --host=arm-linux --prefix=/usr \
--with-gfxdrivers=none --with-inputdrivers=keyboard,linuxinput

Ok, now at the end of the configure, we get:

JPEG yes -ljpeg
PNG yes -I/usr/include/libpng12 -lpng12
[...]
FreeType2 yes -I/usr/include/freetyp2 -lfreetype

It found the JPEG library properly, but for libpng and freetype, it has added -I options that
points to the libpng and freetype libraries installed on our host (x86) and not the one of the
target. This is not correct!

In fact, the DirectFB configure script uses the pkg-config system to get the configuration parame-
ters to link the library against libpng and FreeType. By default, pkg-config looks in /usr/lib/
pkgconfig/ for .pc files, and because the libfreetype6-dev and libpng12-dev pack-
ages are already installed in your system (it was installed in a previous lab as a dependency of
another package), then the configure script of DirectFB found the libpng and FreeType libraries
of your host!

This is one of the biggest issue with cross-compilation: mixing host and target libraries, be-
cause build systems have a tendency to look for libraries in the default paths. In our case,
if libfreetype6-dev was not installed, then the /usr/lib/pkgconfig/freetype2.pc
file wouldn’t exist, and the configure script of DirectFB would have said something like Sorry,
can’t find FreeType.

So, now, we must tell pkg-config to look inside the /usr/lib/pkgconfig/ directory of our
staging space. This is done through the PKG_CONFIG_PATH environment variable, as explained
in the manual page of pkg-config.

Moreover, the .pc files contain references to paths. For example, in $HOME/felabs/sysdev/
thirdparty/staging/usr/lib/pkgconfig/freetype2.pc, we can see:

prefix=/usr
exec_prefix=${prefix}
libdir=${exec_prefix}/lib
includedir=${prefix}/include
[...]
Libs: -L${libdir} -lfreetype
Cflags: -I${includedir}/freetype2 -I${includedir}

40 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

So we must tell pkg-config that these paths are not absolute, but relative to our staging space.
This can be done using the PKG_CONFIG_SYSROOT_DIR environment variable.

Then, let’s run the configuration of DirectFB again, passing the PKG_CONFIG_PATH and PKG_
CONFIG_SYSROOT_DIR environment variables:

LDFLAGS=-L$HOME/felabs/sysdev/thirdparty/staging/usr/lib \
CPPFLAGS=-I$HOME/felabs/sysdev/thirdparty/staging/usr/include \
PKG_CONFIG_PATH=$HOME/felabs/sysdev/thirdparty/staging/usr/lib/pkgconfig \
PKG_CONFIG_SYSROOT_DIR=$HOME/felabs/sysdev/thirdparty/staging \
CC=arm-linux-gcc \
./configure --host=arm-linux --prefix=/usr \
--with-gfxdrivers=none --with-inputdrivers=keyboard,linuxinput

Ok, now, the lines related to Libpng and FreeType 2 looks much better:

PNG yes -I/home/<user>/felabs/sysdev/thirdparty/staging/usr/include/libpng14 -lpng14
FreeType2 yes -I/home/<user>/felabs/sysdev/thirdparty/staging/usr/include/freetype2 -lfreetype

Let’s build DirectFB with make. After a while, it fails, complaining that X11/Xlib.h and other
related header files cannot be found. In fact, if you look back the ./configure script output,
you can see:

X11 support yes -lX11 -lXext

Because X11 was installed on our host, DirectFB ./configure script thought that it should
enable support for it. But we won’t have X11 on our system, so we have to disable it explicitly.
In the ./configure --help output, one can see:

--enable-x11 build with X11 support [default=auto]

So we have to run the configuration again with the same arguments, and add --disable-x11
to them.

The build now goes further, but still fails with another error:

/usr/lib/libfreetype.so: could not read symbols: File in wrong format

As you can read from the above command line, the Makefile is trying to feed an x86 binary
(/usr/lib/libfreetype.so) to your ARM toolchain. Instead, it should have been using
usr/lib/libfreetype.so found in your staging environment.

This happens because the libtool .la files in your staging area need to be fixed to describe the
right paths in this staging area. So, in the .la files, replace libdir=’/usr/lib’ by libdir=
’/home/<user>/felabs/sysdev/thirdparty/staging/usr/lib’. Restart the build
again, preferably from scratch (make clean then make) to be sure everything is fine.

Finally, it builds!

Now, install DirectFB to the staging space using:

make DESTDIR=$HOME/felabs/sysdev/thirdparty/staging/ install

And so the installation in the target space:

• First, the libraries:

cd ..
cp -a staging/usr/lib/libdirect-1.4.so.5* target/usr/lib
cp -a staging/usr/lib/libdirectfb-1.4.so.5* target/usr/lib
cp -a staging/usr/lib/libfusion-1.4.so.5* target/usr/lib
arm-linux-strip target/usr/lib/libdirect-1.4.so.5.0.0
arm-linux-strip target/usr/lib/libdirectfb-1.4.so.5.0.0
arm-linux-strip target/usr/lib/libfusion-1.4.so.5.0.0

© 2004-2014 Free Electrons, CC BY-SA license 41

http://free-electrons.com

Free Electrons Embedded Linux Training

• Then, the plugins that are dynamically loaded by DirectFB. We first copy the whole
/usr/lib/directfb-1.4-5/ directory, then remove the useless files (.la) and finally
strip the .so files:

cp -a staging/usr/lib/directfb-1.4-5/ target/usr/lib
find target/usr/lib/directfb-1.4-5/ -name '*.la' -exec rm {} \;
find target/usr/lib/directfb-1.4-5/ -name '*.so' -exec arm-linux-strip {} \;

DirectFB examples

To test that our DirectFB installation works, we will use the example applications provided
by the DirectFB project. Start by downloading the tarball at http://www.directfb.org/
downloads/Extras/DirectFB-examples-1.2.0.tar.gz and extract it.

Then, we configure it just as we configured DirectFB:

LDFLAGS=-L$HOME/felabs/sysdev/thirdparty/staging/usr/lib \
CPPFLAGS=-I$HOME/felabs/sysdev/thirdparty/staging/usr/include \
PKG_CONFIG_PATH=$HOME/felabs/sysdev/thirdparty/staging/usr/lib/pkgconfig \
PKG_CONFIG_SYSROOT_DIR=$HOME/felabs/sysdev/thirdparty/staging \
CC=arm-linux-gcc \
./configure --host=arm-linux --prefix=/usr

Then, compile it with make. Soon a compilation error will occur because bzero is not defined.
The bzero function is a deprecated BSD function, and memset should be used instead. The
GNU C library still defines bzero, but by default, the uClibc library doesn’t provide bzero
(to save space). So, let’s modify the source code in src/df_knuckles/matrix.c to change
the line:

#define M_CLEAR(m) bzero(m, MATRIX_SIZE)

to

#define M_CLEAR(m) memset(m, 0, MATRIX_SIZE)

Run the compilation again, it should succeed.

For the installation, as DirectFB examples are only applications and not libraries, we don’t
really need them in the staging space, but only in the target space. So we’ll directly install in the
target space using the install-strip make target. This make target is usually available with
autotools based build systems. In addition to the destination directory (DESTDIR variable), we
must also tell which strip program should be used, since stripping is an architecture-dependent
operation (STRIP variable):

make STRIP=arm-linux-strip \
DESTDIR=$HOME/felabs/sysdev/thirdparty/target/ install-strip

Final setup

Start the system in QEMU using the run_qemu script, and try to run the df_andi program,
which is one of the DirectFB examples.

The application will fail to run, because the pthread library (which is a component of the C
library) is missing. This library is available inside the toolchain. So let’s add it to the target:

TOOLCHAIN_SYSROOT=$(arm-linux-gcc -print-sysroot)
cp -a $TOOLCHAIN_SYSROOT/lib/libpthread* target/lib/

42 © 2004-2014 Free Electrons, CC BY-SA license

http://www.directfb.org/downloads/Extras/DirectFB-examples-1.2.0.tar.gz
http://www.directfb.org/downloads/Extras/DirectFB-examples-1.2.0.tar.gz
http://free-electrons.com

Free Electrons Embedded Linux Training

Then, try to run df_andi again. It will complain about libdl, which is used to dynamically
load libraries during application execution. So let’s add this library to the target:

cp -a $TOOLCHAIN_SYSROOT/lib/libdl* target/lib

When running df_andi again, it will complain about libgcc_s, so let’s copy this library to
the target:

cp -a $TOOLCHAIN_SYSROOT/lib/libgcc_s* target/lib

Now, the application should no longer complain about missing libraries. But when started, it
should complain about the /dev/fb0 device file that doesn’t exist. So let’s create this device
file:

sudo mknod target/dev/fb0 c 29 0

Next executing the application will complain about missing /dev/ttyx device files, so let’s
create them:

sudo mknod target/dev/tty0 c 4 0
sudo mknod target/dev/tty5 c 4 5

Finally, when running df_andi, another error message shows up:

Unable to dlopen '/usr/lib/[...]/libidirectfbimageprovider_png.so' !
File not found

DirectFB is trying to load the PNG plugin using the dlopen() function, which is part of the
libdl library we added to the target system before. Unfortunately, loading the plugin fails
with the File not found error. However, the plugin is properly present, so the problem is not
the plugin itself. What happens is that the plugin depends on the libpng library, which itself
depends on the mathematic library. And the mathematic library libm (part of the C library) has
not yet been added to our system. So let’s do it:

cp -a $TOOLCHAIN_SYSROOT/lib/libm* target/lib

Now, you can try and run the df_andi application!

© 2004-2014 Free Electrons, CC BY-SA license 43

http://free-electrons.com

Free Electrons Embedded Linux Training

Using a build system, example with
Buildroot
Objectives: discover how a build system is used and how it works, with
the example of the Buildroot build system. Build a Linux system with
libraries and make it work inside Qemu.

Setup

Go to the $HOME/felabs/sysdev/buildroot/ directory, which already contains some data
needed for this lab, including a kernel image.

Get Buildroot and explore the source code

The official Buildroot website is available at http://buildroot.org/. Download the latest
stable 2013.08.x version which we have tested for this lab. Uncompress the tarball and go inside
the Buildroot source directory.

Several subdirectories or files are visible, the most important ones are:

• boot contains the Makefiles and configuration items related to the compilation of com-
mon bootloaders (Grub, U-Boot, Barebox, etc.)

• configs contains a set of predefined configurations, similar to the concept of defconfig
in the kernel.

• docs contains the documentation for Buildroot. You can start reading buildroot.html
which is the main Buildroot documentation;

• fs contains the code used to generate the various root filesystem image formats

• linux contains the Makefile and configuration items related to the compilation of the
Linux kernel

• Makefile is the main Makefile that we will use to use Buildroot: everything works
through Makefiles in Buildroot;

• package is a directory that contains all the Makefiles, patches and configuration items to
compile the userspace applications and libraries of your embedded Linux system. Have
a look at various subdirectories and see what they contain;

• system contains the root filesystem skeleton and the device tables used when a static /dev
is used;

• toolchain contains the Makefiles, patches and configuration items to generate the cross-
compiling toolchain.

44 © 2004-2014 Free Electrons, CC BY-SA license

http://buildroot.org/
http://free-electrons.com

Free Electrons Embedded Linux Training

Configure Buildroot

In our case, we would like to:

• Generate an embedded Linux system for ARM;

• Use an already existing external toolchain instead of having Buildroot generating one for
us;

• Integrate Busybox, DirectFB and DirectFB sample applications in our embedded Linux
system;

• Integrate the target filesystem into both an ext2 filesystem image and a tarball

To run the configuration utility of Buildroot, simply run:

make menuconfig

Set the following options:

• Target Architecture: ARM (little endian)

• Target Architecture Variant: arm926t (we will start booting the generated filesys-
tem on an emulated arm9 based system, instead of the IGEPv2 board)

• Toolchain

– Toolchain type: External toolchain

– Toolchain: Custom toolchain

– Toolchain path: use the toolchain you built: /usr/local/xtools/arm-unknown-
linux-uclibcgnueabi

– External toolchain C library: uClibc

– We must tell Buildroot about our toolchain configuration, so: enable Toolchain
has large file support?, Toolchain has RPC support?, and Toolchain
has C++ support?. Buildroot will check these parameters anyway.

• System configuration

– Port to run a getty (login prompt) on: change ttyS0 to tty1

• Target packages

– Keep BusyBox (default version) and keep the Busybox configuration proposed by
Buildroot;

– In Graphic libraries and applications (graphic/text)

* Select directfb. Buildroot will automatically select the necessary dependen-
cies.

· Remove enable touchscreen support

· Select directfb examples

· Select all the DirectFB examples

• Filesystem images

– Select ext2/3/4 root filesystem

– Select tar the root filesystem

© 2004-2014 Free Electrons, CC BY-SA license 45

http://free-electrons.com

Free Electrons Embedded Linux Training

Exit the menuconfig interface. Your configuration has now been saved to the .config file.

Generate the embedded Linux system

Just run:

make

Buildroot will first create a small environment with the external toolchain, then download,
extract, configure, compile and install each component of the embedded system.

All the compilation has taken place in the output/ subdirectory. Let’s explore its contents:

• build, is the directory in which each component built by Buildroot is extract, and where
the build actually takes place

• host, is the directory where Buildroot installs some components for the host. As Build-
root doesn’t want to depend on too many things installed in the developer machines, it
installs some tools needed to compile the packages for the target. In our case it installed
pkg-config (since the version of the host may be ancient) and tools to generate the root
filesystem image (genext2fs, makedevs, fakeroot)

• images, which contains the final images produced by Buildroot. In our case it’s just
an ext2 filesystem image and a tarball of the filesystem, but depending on the Buildroot
configuration, there could also be a kernel image or a bootloader image. This is where
we find rootfs.tar and rootfs.ext2, which are respectively the tarball and the ext2
image of the generated root filesystem.

• staging, which contains the build space of the target system. All the target libraries,
with headers, documentation. It also contains the system headers and the C library,
which in our case have been copied from the cross-compiling toolchain.

• target, is the target root filesystem. All applications and libraries, usually stripped, are
installed in this directory. However, it cannot be used directly as the root filesystem, as
all the device files are missing: it is not possible to create them without being root, and
Buildroot has a policy of not running anything as root.

• toolchain, is the location where the toolchain is built. However, in our configuration,
we re-used an existing toolchain, so this directory contains almost nothing.

Run the generated system

If you didn’t do it in the previous lab, install QEMU emulator for non x86 targets:

sudo apt-get install qemu-kvm-extras

We will use the kernel image in data and the filesystem image generated by Buildroot in the
ext2 format to boot the generated system in QEMU. We start by using a QEMU emulated ARM
board with display support, allowing to test graphical applications relying on the DirectFB
library. Later, we will be able move to a real board if your hardware also has a graphical
display.

Execute the run_qemu script, which contains what’s needed to boot the system in QEMU.

Log in (root account, no password), and run demo programs:

df_andi
df_dok
df_fire

46 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

...

Going further

• Add dropbear (SSH server and client) to the list of packages built by Buildroot, add the
network emulation in QEMU (see the ../thirdparty/run_qemu script for an exam-
ple), and log to your target system in QEMU using a ssh client on your development
workstation. Hint: you will have to set a non-empty password for the root account on
your target for this to work.

• Add a new package in Buildroot for the GNU Gtypist game. Read the Buildroot doc-
umentation to see how to add a new package. Finally, add this package to your target
system, compile it and run it in QEMU.

© 2004-2014 Free Electrons, CC BY-SA license 47

http://free-electrons.com

Free Electrons Embedded Linux Training

Application development
Objective: Compile and run your own DirectFB application on the tar-
get.

Setup

Go to the $HOME/felabs/sysdev/appdev directory.

Compile your own application

We will re-use the system built during the Buildroot lab and add to it our own application.

First, instead of using an ext2 image, we will mount the root filesystem over NFS to make it
easier to test our application. So, create a qemu-rootfs/ directory, and inside this directory,
uncompress the tarball generated by Buildroot in the previous lab (in the output/images/
directory). Don’t forget to extract the archive as root since the archive contains device files.

Then, run the run_qemu script and check that the system works as expected.

Now, our application. In the lab directory the file data/app.c contains a very simple DirectFB
application that displays the data/background.png image for five seconds. We will compile
and integrate this simple application to our Linux system.

Buildroot has generated toolchain wrappers in output/host/usr/bin, which make it eas-
ier to use the toolchain, since those wrappers pass some mandatory flags (especially the --
sysroot gcc flag, which tells gcc where to look for the headers and libraries).

Let’s add this directory to our PATH:

export PATH=$HOME/felabs/sysdev/buildroot/buildroot-XXXX.YY/output/host/usr/bin:$PATH

Let’s try to compile the application:

arm-linux-gcc -o app app.c

It complains that it cannot find the directfb.h header. This is normal, since we didn’t tell the
compiler where to find it. So let’s use pkg-config to query the pkg-config database about
the location of the header files and the list of libraries needed to build an application against
DirectFB:11

arm-linux-gcc -o app app.c $(pkg-config --libs --cflags directfb)

Our application is now compiled! Copy the generated binary and the background.png image
to the NFS root filesystem (in the root/ directory for example), start your system, and run your
application!

11Again, output/host/usr/bin has a special pkg-config that automatically knows where to look, so it already
knows the right paths to find .pc files and their sysroot.

48 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

Remote application debugging
Objective: Use strace to diagnose program issues. Use gdbserver and a
cross-debugger to remotely debug an embedded application

Setup

Go to the $HOME/felabs/sysdev/debugging directory.

Debugging setup

Boot your ARM board over NFS on the filesystem produced in the Tiny embedded system lab,
with the same kernel.

Setting up gdbserver and strace

gdbserver and strace have already been compiled for your target architecture as part of
the cross-compiling toolchain. Find them in the installation directory of your toolchain. Copy
these binaries to the /usr/bin/ directory in the root filesystem of your target system.

Enabling job control

In this lab, we are going to run a buggy program that keeps hanging and crashing. Because
of this, we are going to need job control, in particular [Ctrl] [C] allowing to interrupt a
running program.

At boot time, you probably noticed that warning that job control was turned off:

/bin/sh: can't access tty; job control turned off

This happens when the shell is started in the console. The system console cannot be used as a
controlling terminal.

The fix is to start this shell in ttyO2 (the 3rd OMAP serial port on the IGEPv2 board) by modi-
fying the /etc/inittab file:

Replace

::askfirst:/bin/sh

which implied the use of the system console device by

ttyO2::askfirst:/bin/sh

to tell the init program to start the shell on /dev/ttyO2

Now reboot. You should no longer see the Job control turned off warning, and should
be able to use [Ctrl] [C].

© 2004-2014 Free Electrons, CC BY-SA license 49

http://free-electrons.com

Free Electrons Embedded Linux Training

Using strace

strace allows to trace all the system calls made by a process: opening, reading and writing
files, starting other processes, accessing time, etc. When something goes wrong in your appli-
cation, strace is an invaluable tool to see what it actually does, even when you don’t have the
source code.

With your cross-compiling toolchain, compile the data/vista-emulator.c program, strip
it with arm-linux-strip, and copy the resulting binary to the /root directory of the root
filesystem (you might need to create this directory if it doesn’t exist yet).

arm-linux-gcc -o vista-emulator data/vista-emulator.c
cp vista-emulator path/to/root/filesystem/root

Back to target system, try to run the /root/vista-emulator program. It should hang in-
definitely!

Interrupt this program by hitting [Ctrl] [C].

Now, running this program again through the strace command and understand why it hangs.
You can guess it without reading the source code!

Now add what the program was waiting for, and now see your program proceed to another
bug, failing with a segmentation fault.

Using gdbserver

We are now going to use gdbserver to understand why the program segfaults.

Compile vista-emulator.c again with the -g option to include debugging symbols. This
time, just keep it on your workstation, as you already have the version without debugging
symbols on your target.

Then, on the target side, run vista-emulator under gdbserver. gdbserver will listen on a
TCP port for a connection from GDB, and will control the execution of vista-emulator according
to the GDB commands:

gdbserver localhost:2345 vista-emulator

On the host side, run arm-linux-gdb (also found in your toolchain):

arm-linux-gdb vista-emulator

You can also start the debugger through the ddd interface:

ddd --debugger arm-linux-gdb vista-emulator

GDB starts and loads the debugging information from the vista-emulator binary that has
been compiled with -g.

Then, we need to tell where to find our libraries, since they are not present in the default /lib
and /usr/lib directories on your workstation. This is done by setting GDB sysroot variable
(on one line):

(gdb) set sysroot /usr/local/xtools/arm-unknown-linux-uclibcgnueabi/
arm-unknown-linux-uclibcgnueabi/sysroot/

And tell gdb to connect to the remote system:

(gdb) target remote <target-ip-address>:2345

50 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

Then, use gdb as usual to set breakpoints, look at the source code, run the application step by
step, etc. Graphical versions of gdb, such as ddd can also be used in the same way. In our case,
we’ll just start the program and wait for it to hit the segmentation fault:

(gdb) continue

You could then ask for a backtrace to see where this happened:

(gdb) backtrace

This will tell you that the segmentation fault occurred in a function of the C library, called by
our program. This should help you in finding the bug in our application.

What to remember

During this lab, we learned that...

• Compiling an application for the target system is very similar to compiling an applica-
tion for the host, except that the cross-compilation introduces a few complexities when
libraries are used.

• It’s easy to study the behavior of programs and diagnose issues without even having the
source code, thanks to strace.

• You can leave a small gdbserver program (300 KB) on your target that allows to debug
target applications, using a standard GDB debugger on the development host.

• It is fine to strip applications and binaries on the target machine, as long as the programs
and libraries with debugging symbols are available on the development host.

© 2004-2014 Free Electrons, CC BY-SA license 51

http://free-electrons.com

Free Electrons Embedded Linux Training

Real-time - Timers and scheduling la-
tency
Objective: Learn how to handle real-time processes and practice with the
different real-time modes. Measure scheduling latency.

After this lab, you will:

• Be able to check clock accuracy.

• Be able to start processes with real-time priority.

• Be able to build a real-time application against the standard POSIX real-time API, and
against Xenomai’s POSIX skin.

• Have compared scheduling latency on your system, between a standard kernel and a
kernel with Xenomai.

Setup

Go to the $HOME/felabs/realtime/rttest directory.

If you are using a 64 bit installation of Ubuntu, install support for executables built with a 32
bit C library:

sudo apt-get install ia32-libs

This will be needed to use the toolchain from Code Sourcery.

Install the netcat package.

Root filesystem

Create an nfsroot directory.

To compare real-time latency between standard Linux and Xenomai, we are going to need a
root filesystem and a build environment that supports Xenomai.

Let’s build this with Buildroot.

Download and extract the Buildroot 2013.02 sources. Apply the Buildroot patch buildroot-
2013.02-bump-xenomai-to-2.6.2.1.patch from the lab data directory to your Build-
root sources. It upgrades the Xenomai version to 2.6.2.1, which allows to use the 3.5 kernel. Ap-
ply the 0001-ext-toolchain-wrapper-fix-paths-if-executable-was-re.patch
patch from this buildroot lab’s data directory. It fixes a bug in Buildroot’s external toolchain
logic.

Configure Buildroot with the following settings, using the / command in make menuconfig
to find parameters by their name:

• Target architecture: ARM (little endian)

52 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

• Target Architecture Variant: cortex-a8

• In Toolchain:

– Toolchain type: External toolchain

– Toolchain: Sourcery CodeBench ARM 2012.03

• In System configuration:

– /dev management: Dynamic using devtmpfs only

– Port to run a getty (login prompt) on: ttyO2

• In Package Selection for the target:

– Enable Show packages that are also provided by busybox. We need this
to build the standard netcat command, not provided in the default BusyBox con-
figuration.

– In Debugging, profiling and benchmark, enable rt-tests. This will be a
few applications to test real-time latency.

– In Networking applications, enable netcat

– In Real-Time, enable Xenomai Userspace:

* Enable Install testsuite

* Make sure that POSIX skin library is enabled.

Now, build your root filesystem.

At the end of the build job, extract the output/images/rootfs.tar archive in the nfsroot
directory.

The last thing to do is to add a few files that we will need in our tests:

cp data/* nfsroot/root

Compile a standard Linux kernel

Download the exact Linux 3.5.7 version. That’s the most recent ARM Linux version that Xeno-
mai 2.6.2.1 supports. You will have trouble applying Xenomai kernel patches otherwise.

Apply the linux-3.5.7-igepv2-fix-pinmux.patch patch from this lab’s data direc-
tory.

Configure your kernel with the default configuration for the IGEPv2 board.

In the kernel configuration interface:

• Enable CONFIG_DEVTMPFS and CONFIG_DEVTMPFS_MOUNT The root filesystem that we
use has an empty /dev directory, and we let the kernel populate it with the devices
present on the system.

• For the moment, remove CONFIG_HIGH_RES_TIMERS, to start by testing the kernel
without high-resolution timers.

• Disable CONFIG_SMP, as Xenomai 2.6.1 does not support yet multi-processing on OMAP
(and the IGEPv2 is anyway a single core processor).

• Disable CONFIG_PROVE_LOCKING, CONFIG_DEBUG_LOCK_ALLOC, CONFIG_DEBUG_MUTEXES
and CONFIG_DEBUG_SPINLOCK.

© 2004-2014 Free Electrons, CC BY-SA license 53

http://free-electrons.com

Free Electrons Embedded Linux Training

Boot the IGEP board by mounting the root filesystem that you built. As usual, login as root,
there is no password.

Compiling with the POSIX RT library

The root filesystem was built with the GNU C library, because it has better support for the
POSIX RT API.

In our case, when we created this lab, uClibc didn’t support the clock_nanosleep function
used in our rttest.c program. uClibc also does not support priority inheritance on mutexes.

Therefore, we will need to compile our test application with the toolchain that Buildroot used.

Let’s configure our PATH to use this toolchain:

export
PATH=$HOME/felabs/realtime/rttest/buildroot-2013.02/output/host/usr/bin:$PATH

Have a look at the rttest.c source file available in root/ in the nfsroot/ directory. See
how it shows the resolution of the CLOCK_MONOTONIC clock.

Now compile this program:

arm-none-linux-gnueabi-gcc -o rttest rttest.c -lrt

Execute the program on the board. Is the clock resolution good or bad? Compare it to the timer
tick of your system, as defined by CONFIG_HZ.

Obviously, this resolution will not provide accurate sleep times, and this is because our kernel
doesn’t use high-resolution timers. So let’s enable the CONFIG_HIGH_RES_TIMERS option in
the kernel configuration.

Recompile your kernel, boot your IGEP board with the new version, and check the new reso-
lution. Better, isn’t it?

Testing the non-preemptible kernel

Now, do the following tests:

• Test the program with nothing special and write down the results.

• Test your program and at the same time, add some workload to the board, by running
/root/doload 300 > /dev/null 2>&1 & on the board, and using netcat 192.
168.0.100 5566 on your workstation in order to flood the network interface of the
IGEP board (where 192.168.0.100 is the IP address of the IGEP board).

• Test your program again with the workload, but by running the program in the SCHED_
FIFO scheduling class at priority 99, using the chrt command.

Testing the preemptible kernel

Recompile your kernel with CONFIG_PREEMPT enabled, which enables kernel preemption (ex-
cept for critical sections protected by spinlocks).

Run the simple tests again with this new preemptible kernel and compare the results.

54 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

Free Electrons Embedded Linux Training

Testing Xenomai scheduling latency

Prepare the kernel for Xenomai compilation:

cd $HOME/felabs/realtime/rttest/buildroot-2013.02/
./output/build/xenomai-2.6.2.1/scripts/prepare-kernel.sh \

--arch=arm --linux=/path/to/linux-3.5.7

Now, run the kernel configuration interface, and make sure that the below options are enabled,
taking your time to read their description:

• CONFIG_XENOMAI

• CONFIG_XENO_DRIVERS_TIMERBENCH

• CONFIG_XENO_HW_UNLOCKED_SWITCH

In order to build our application against the Xenomai libraries, we will need pkg-config built
by Buildroot. So go in your Buildroot source directory, and force Buildroot to build the host
variant of pkg-config:

cd $HOME/felabs/realtime/rttest/buildroot-2013.02/
make host-pkgconf

Compile your kernel, and in the meantime, compile rttest for the Xenomai POSIX skin:

cd $HOME/felabs/realtime/rttest/nfsroot/root
export PATH=$HOME/felabs/realtime/rttest/buildroot-2013.02/output/host/usr/bin:$PATH
arm-none-linux-gnueabi-gcc -o rttest rttest.c $(pkg-config --libs --cflags libxenomai_posix)

Now boot the board with the new kernel.

Run the following commands on the board:

echo 0 > /proc/xenomai/latency

This will disable the timer compensation feature of Xenomai. This feature allows Xenomai to
adjust the timer programming to take into account the time the system needs to schedule a task
after being woken up by a timer. However, this feature needs to be calibrated specifically for
each system. By disabling this feature, we will have raw Xenomai results, that could be further
improved by doing proper calibration of this compensation mechanism.

Run the tests again, compare the results.

Testing Xenomai interrupt latency

Measure the interrupt latency with and without load, running the following command:

latency -t 2

© 2004-2014 Free Electrons, CC BY-SA license 55

http://free-electrons.com

Free Electrons Embedded Linux Training

Backing up your lab files
Objective: clean up and make an archive of your lab directory

End of the training session

Congratulations. You reached the end of the training session. You now have plenty of work-
ing examples you created by yourself, and you can build upon them to create more elaborate
things.

In this last lab, we will create an archive of all the things you created. We won’t keep everything
though, as there are lots of things you can easily retrieve again.

Create a lab archive

Go to the directory containing your felabs directory:

cd $HOME

Now, run a command that will do some clean up and then create an archive with the most
important files:

• Kernel configuration files

• Other source configuration files (BusyBox, Crosstool-ng...)

• Kernel images

• Toolchain

• Other custom files

Here is the command:

./felabs/archive-labs

At end end, you should have a felabs-<user>.tar.xz archive that you can copy to a USB
flash drive, for example. This file should only be a few hundreds of MB big.

56 © 2004-2014 Free Electrons, CC BY-SA license

http://free-electrons.com

	About this document
	Copying this document
	Training setup
	Install lab data
	Install extra packages
	More guidelines

	Building a cross-compiling toolchain
	Setup
	Install needed packages
	Getting Crosstool-ng
	Installing Crosstool-ng
	Configure the toolchain to produce
	Produce the toolchain
	Known issues

	Testing the toolchain
	Cleaning up

	Bootloader - U-Boot
	Setup
	MMC/SD card setup
	U-Boot setup
	Setting up serial communication with the board
	Testing U-Boot on the MMC card
	Reflashing from U-boot
	Setting up Ethernet communication
	Rescue binaries

	Kernel sources
	Setup
	Get the sources
	Apply patches

	Kernel - Cross-compiling
	Setup
	Target system
	Kernel sources
	Cross-compiling environment setup
	Linux kernel configuration
	Cross compiling
	Setting up serial communication with the board
	Load and boot the kernel using U-Boot
	Flashing the kernel and DTB in NAND flash

	Tiny embedded system with BusyBox
	Lab implementation
	Setup
	Kernel configuration
	Setting up the NFS server
	Booting the system
	Root filesystem with Busybox
	Virtual filesystems
	System configuration and startup
	Switching to shared libraries
	Implement a web interface for your device

	Filesystems - Block file systems
	Goals
	Setup
	Filesystem support in the kernel
	Add partitions to the MMC card
	Data partition on the MMC disk
	Adding a tmpfs partition for log files
	Making a SquashFS image
	Booting on the SquashFS partition
	Store the kernel image and DTB on the MMC card

	Filesystems - Flash file systems
	Setup
	Goals
	Enabling NAND flash and filesystems
	Filesystem image preparation
	MTD partitioning and flashing

	Third party libraries and applications
	Figuring out library dependencies
	Preparation
	Testing
	zlib
	Libpng
	libjpeg
	FreeType
	DirectFB
	DirectFB examples
	Final setup

	Using a build system, example with Buildroot
	Setup
	Get Buildroot and explore the source code
	Configure Buildroot
	Generate the embedded Linux system
	Run the generated system
	Going further

	Application development
	Setup
	Compile your own application

	Remote application debugging
	Setup
	Debugging setup
	Setting up gdbserver and strace
	Enabling job control
	Using strace
	Using gdbserver
	What to remember

	Real-time - Timers and scheduling latency
	Setup
	Root filesystem
	Compile a standard Linux kernel
	Compiling with the POSIX RT library
	Testing the non-preemptible kernel
	Testing the preemptible kernel
	Testing Xenomai scheduling latency
	Testing Xenomai interrupt latency

	Backing up your lab files
	End of the training session
	Create a lab archive

